פוסט זה זמין גם ב: עברית
Michelle M. J. Nassal, MD, PhD;AndoniElola,PhD;Elisabete Aramendi,PhD;XabierJaureguibeitia, PhD; Jonathan R. Powell, MPA;AhamedIdris,MD; BanuPriyaRayaKrishnamoorthy,BS;MohamudR.Daya,MD;TomP.Aufderheide,MD;JestinN.Carlson,MD;ShannonW.Stephens,CCEMT-P; Ashish R. Panchal, MD,PhD;HenryE.Wang,MD
Abstract
Importance: While widely measured, the time-varying association between exhaled end-tidal carbon dioxide (EtCO2) and out-of-hospital cardiac arrest (OHCA) outcomes is unclear.
Objective: To evaluate temporal associations between EtCO2 and return of spontaneous circulation (ROSC) in the Pragmatic Airway Resuscitation Trial (PART).
Design, setting, and participants: This study was a secondary analysis of a cluster randomized trial performed at multicenter emergency medical services agencies from the Resuscitation Outcomes Consortium. PART enrolled 3004 adults (aged ≥18 years) with nontraumatic OHCA from December 1, 2015, to November 4, 2017. EtCO2 was available in 1172 cases for this analysis performed in June 2023.
Interventions: PART evaluated the effect of laryngeal tube vs endotracheal intubation on 72-hour survival. Emergency medical services agencies collected continuous EtCO2 recordings using standard monitors, and this secondary analysis identified maximal EtCO2 values per ventilation and determined mean EtCO2 in 1-minute epochs using previously validated automated signal processing. All advanced airway cases with greater than 50% interpretable EtCO2 signal were included, and the slope of EtCO2 change over resuscitation was calculated.
Main outcomes and measures: The primary outcome was ROSC determined by prehospital or emergency department palpable pulses. EtCO2 values were compared at discrete time points using Mann-Whitney test, and temporal trends in EtCO2 were compared using Cochran-Armitage test of trend. Multivariable logistic regression was performed, adjusting for Utstein criteria and EtCO2 slope.
Results: Among 1113 patients included in the study, 694 (62.4%) were male; 285 (25.6%) were Black or African American, 592 (53.2%) were White, and 236 (21.2%) were another race; and the median (IQR) age was 64 (52-75) years. Cardiac arrest was most commonly unwitnessed (n = 579 [52.0%]), nonshockable (n = 941 [84.6%]), and nonpublic (n = 999 [89.8%]). There were 198 patients (17.8%) with ROSC and 915 (82.2%) without ROSC. Median EtCO2 values between ROSC and non-ROSC cases were significantly different at 10 minutes (39.8 [IQR, 27.1-56.4] mm Hg vs 26.1 [IQR, 14.9-39.0] mm Hg; P < .001) and 5 minutes (43.0 [IQR, 28.1-55.8] mm Hg vs 25.0 [IQR, 13.3-37.4] mm Hg; P < .001) prior to end of resuscitation. In ROSC cases, median EtCO2 increased from 30.5 (IQR, 22.4-54.2) mm HG to 43.0 (IQR, 28.1-55.8) mm Hg (P for trend < .001). In non-ROSC cases, EtCO2 declined from 30.8 (IQR, 18.2-43.8) mm Hg to 22.5 (IQR, 12.8-35.4) mm Hg (P for trend < .001). Using adjusted multivariable logistic regression with slope of EtCO2, the temporal change in EtCO2 was associated with ROSC (odds ratio, 1.45 [95% CI, 1.31-1.61]).
Conclusions and relevance: In this secondary analysis of the PART trial, temporal increases in EtCO2 were associated with increased odds of ROSC. These results suggest value in leveraging continuous waveform capnography during OHCA resuscitation.