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IMPORTANCE Sepsis is a leading cause of death in children. Early recognition and treatment
improve outcomes, but predictive models have not to date improved early diagnosis.

OBJECTIVE To develop machine learning models to estimate the probability of developing
sepsis in the subsequent 48 hours.

DESIGN, SETTING, AND PARTICIPANTS This was a multisite registry for model derivation and
validation using electronic health record (EHR) data from January 2016 through February
2020 and temporal validation from January 2021 through December 2022. The performance
of machine learning algorithms was compared to predict development of sepsis and septic
shock via logistic regression, specifically ridge regression and gradient tree boosting. Five
health systems contributing to the Pediatric Emergency Care Applied Research Network were
included. Emergency department (ED) visits for children aged 2 months or older to less than
18 years of age excluding patients with ED disposition of death or transfer, trauma diagnosis,
or sepsis present during predictive features window. The TRIPOD-AI reporting guideline was
followed, and data analysis was conducted from September 2023 to July 2025.

EXPOSURES Patient and physiologic characteristics within the first 4 hours of ED care.

MAIN OUTCOMES AND MEASURES Sepsis, defined as suspected infection with a Phoenix Sepsis
Criteria (PSC) score of 2 or more or death within 48 hours of ED arrival.

RESULTS The dataset included 1 604 422 eligible visits in the training cohort and 719 298
visits in the test cohort. Performance characteristics for the PSC sepsis prediction models
were AUROC of 0.92 (95% CI, 0.92-0.93) for logistic regression and 0.94 (95% CI, 0.93-0.94)
for gradient tree boosting. AUROCs for PSC shock models were 0.92 or greater. The gradient
tree boosting models had positive likelihood ratios ranging from 4.67 (95% CI, 4.61-4.74) to
6.18 (95% CI, 6.08-6.28) for sepsis and from 4.16 (95% CI, 4.07-4.24) to 5.83 (95% CI,
5.67-5.99) for septic shock. Predictive features included emergency severity index,
age-adjusted vital signs, and medical complexity. Assessment of model performance fairness
was similar for all demographic characteristics except payor; AUROC for patients with
Medicaid insurance was better than for those with commercial payers.

CONCLUSIONS AND RELEVANCE Using a large multicenter population, models were developed
and validated with high AUROC to predict the future development of sepsis based on EHR
data collected in the ED. The models achieved positive likelihood ratios to predict sepsis and
septic shock. The results highlight the opportunity for future studies that combine EHR-based
models with clinical judgment to improve prediction.
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S epsis, in which infection causes life-threatening organ
dysfunction, is a leading global cause of pediatric death.1

In the US, where more than 75 000 children are hospi-
talized with sepsis yearly, the in-hospital mortality is 5% to
20%.2,3 Outcomes are worsened with delayed diagnosis and
treatment, yet predictive models have not been broadly de-
ployed successfully to improve early diagnosis of sepsis in
children.4-7

While some models have been developed to predict mor-
tality in pediatric sepsis, there are few that address the earlier
phase of prognostic identification and treatment, before or-
gan dysfunction is present, when a model may be most help-
ful for early diagnosis and treatment of high-risk patients.8,9

Existing early, pre–intensive care unit models have subopti-
mal test characteristics for clinical use.10-13 Models based on
multicenter datasets have not been reported that predict or-
gan dysfunction among children in the emergency setting, in
whom organ dysfunction is not already present. New diag-
nostic criteria for pediatric sepsis, the Phoenix Sepsis Criteria
(PSC), were recently published with the authors explicitly stat-
ing that the criteria identify infection-associated life-
threating organ dysfunction but do not predict sepsis in
children.14,15 Prediction is the important next step to reduce
preventable harm from sepsis.

To address the need to improve early prognostic diagno-
sis of sepsis in children in the ED setting, this study used mul-
ticenter electronic health record (EHR) data to derive and vali-
date predictive models to identify patients at risk for pediatric
sepsis before organ dysfunction had already occurred. Spe-
cifically, the goal of this study was to develop machine learn-
ing models using EHR data from the first 4 hours after ED ar-
rival to estimate the probability of developing sepsis with organ
dysfunction in the subsequent 48 hours.

Methods
Dataset and Population
We established a multisite registry of emergency department
(ED) and inpatient EHR data (Epic and Cerner systems) from
a cohort of visits at 5 health systems in the US (5 academic qua-
ternary-care EDs and hospitals and 3 affiliated community EDs
and hospitals) in the Pediatric Emergency Care Applied Re-
search Network (PECARN). We followed the TRIPOD-AI guid-
ance for reporting prediction models that use machine learn-
ing methods.16 The study was approved by the institutional
review boards of all study sites and the data center. We pre-
registered the analysis plan.17

The cohort included all ED visits for children age 2 months
and older to less than 18 years, with the following exclusions:
(1) ED disposition of death or transfer to a facility not within
the database, (2) ED International Classification of Diseases 10th
Revision Clinical Modification trauma diagnosis codes (S,T,V,Y
prefixes), or (3) sepsis criteria met during the timeframe for
monitoring predictive variables (features window). We did not
include infants younger than 2 months because febrile neo-
nate protocols largely drive care for these children with dif-
ferent risk levels than older children.18-20

The features window started at the arrival to the ED and
concluded at the earlier of either 4 hours from ED arrival or
ED disposition (discharge home or admission/transfer to a
study hospital). Outcomes were calculated within a 48-hour
window after the end of the features window (eFigure 1 in
Supplement 1) including EHR data from the index and return
visits within the outcome window.

The training dataset consisted of data from January 1, 2016,
through February 29, 2020, and a heldout temporal valida-
tion dataset from January 1, 2021, through December 31, 2022.
We excluded visits during the early months of the COVID-19
pandemic (March-December 2020) because this period was not
representative of typical care.21 Data were analyzed from Sep-
tember 2023 to July 2025.

Outcomes
The primary outcome of the model was a composite of sus-
pected infection and sepsis or death. Suspected infection was
defined, as in past work in the ED setting, using a laboratory
evaluation for infectious etiology or a chest radiograph be-
tween ED arrival and conclusion of the 48-hour outcome win-
dow, to identify patients who were evaluated for potential
infection.22 In our models, sepsis outcome was determined by
suspected infection with a PSC score of 2 or greater.14,15

To ensure all sepsis score–qualifying organ dysfunction
points occurred within the same 24-hour period, PSC scores
were assessed for two 24-hour discrete time periods within the
outcome window. For each visit, sepsis criteria were assessed
using the worst observed vitals, laboratory values, and inter-
ventions in each period, with the higher score of the 2 peri-
ods determining the PSC score for the visit. The secondary out-
come of PSC septic shock was defined as suspected infection
and PSC sepsis with 1 or more PSC cardiovascular points using
the same process described above.

Features
Features were categorized and models were built for each of
the following: (1) patient characteristics (ie, physiologic and
clinical measures excluding measures affected by clinical de-
cisions such as laboratory test results or the number of vital
signs collected) and (2) patient characteristics excluding the
Emergency Severity Index (ESI), a global assessment of acuity

Key Points
Question What is the predictive power of machine learning
models for pediatric sepsis in the emergency department using
electronic health record data to identify patients without sepsis
who will develop sepsis within 48 hours?

Findings Using more than 1.6 million ED visits, models to predict
Phoenix Sepsis Criteria scores were derived and validated. The
gradient tree boosting models for PSC sepsis had meaningful
positive likelihood ratios.

Meaning Machine learning predictive models for sepsis in the ED
can identify children who have not yet developed sepsis and may
be useful in future implementation work to identify children at
risk.
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and severity assigned at triage.23 Patient features for the pri-
mary analyses included (eTable 1A and 1B in Supplement 1)
(1) measures of acuity, including the Emergency Severity Index,21

arrival mode, prior notification of arrival or referral; (2) clinical
observations, including weight, age-adjusted vital signs, oxy-
gen saturation, and pain score (all scores normalized to a 10 point
scale); (3) markers for medical complexity, including ED utili-
zation during the prior year, presence of complex chronic con-
ditions (CCC, categorized as no CCCs vs at least 1 CCC; also cat-
egorized as an ordinal feature: no CCCs, 1 CCC, or 2 or more CCCs
present in the EHR problem list),24,25 and presence of indwelling
central venous line or tracheostomy; and (4) biological vari-
ables, including age and sex assigned at birth.

Statistical Analysis
Using the training data, we tuned and compared the perfor-
mance of 2 machine learning algorithms to predict sepsis and
septic shock: (1) logistic regression, specifically ridge regres-
sion (L2 penalty), and (2) gradient tree boosting. Hyperparam-
eters of our models were tuned within the training dataset by
10-fold cross-validation nested within an outer loop of 5-folds
in which each hospital system was held out. The optimiza-
tion target for hyperparameter tuning was maximum speci-
ficity on held out samples at a threshold of 90% sensitivity, a
threshold chosen as a minimal acceptable sensitivity for screen-
ing for a potentially fatal disease. The dataset was partitioned
to ensure that children with multiple ED visits were not di-
vided across folds. For the L2 penalty (ridge) regression, we
considered cost parameters of 10−5, 10−2, 10−1, and 1. For gra-
dient tree boosting, we used a grid search approach to select
hyperparameters with a learning rate of 0.1 and the following
parameters: {‘n_estimators’:[100, 1000], ‘max_features’:[1, 2,
4, 8], ‘max_depth’:[1, 2, 4, 8]}.

Using the hyperparameters that maximized specificity at
90% sensitivity across the majority of cross-validation folds,
we refit our models using all available training data and evalu-
ated performance in our temporal test set. We determined
specificity, positive likelihood ration, and positive predictive
value at both 90% sensitivity and Youden cutpoints,26 and area

under the receiver operating characteristic (AUROC). We pro-
vide plots of the receiver operating characteristic curve, the
precision-recall curve, and Shapley Additive Explanations
values.27 We assessed fairness of the models to not create or
exacerbate inequalities in health care provision or outcomes
by assessing performance in subgroups of age, race, ethnic-
ity, gender, language, insurance status, and site.16 We as-
sessed calibration by reporting Brier scores and binning pre-
dicted probabilities of sepsis into deciles to calculate the
expected calibration error and plot-calibration curves. Model
stability was evaluated by fitting a suite of 5 models using the
training data, but withholding the data for 1 of the 5 sites in
each model (ie, each model was fit using data from 4 of the 5
available sites). We then assessed the variability in perfor-
mance observed in the temporal test set compared to the
models fit using all available training data. All analyses were
performed using Python version 3.8 with the addition of scikit-
learn version 1.3.0 and gradient tree boosting (XGBoost ver-
sion 1.7.6). The code for these analyses and resultant models
are available online.28

Results
There were 3 060 199 eligible ED visits with 2 323 720 meet-
ing inclusion criteria, with 1 604 422 visits in the training co-
hort and 719 298 in the test cohort (Figure 1). In the training
cohort, 0.35% (95% CI, 0.34-0.36) of visits met PSC sepsis cri-
teria and 0.15% (95% CI, 0.15-0.16) met PSC shock criteria in
the outcome window with similar proportions in the test set
(Table 1). PSC sepsis and shock rates varied across sites (Table 1).
Demographic description of the cohort by site is in eTable 2A
in Supplement 1 and by training or temporal validation data-
sets in eTable 2B in Supplement 1 with an overall median (IQR)
age of 4.7 years (1.7-10.1) and 48.6% of visits among female in-
dividuals. The median (IQR) hospital length of stay for those
visits in the overall cohort resulting in admission was 2 (1-4)
days, for visits meeting PSC sepsis criteria was 6 (3-11) days,
and for those visits meeting PSC shock criteria was 5 (3-10) days.
The overall cohort had a mortality rate of 0.015%, with visits
meeting PSC sepsis criteria having mortality of 2.164%, and vis-
its meeting PSC shock criteria with mortality of 3.307%.

Figure 1. Flow Diagram

3 060 199 Valid ED visits where patient was aged 2 mo to 
<18 y from January 2016 through February 2020 
and January 2021 through December 2022

2 323 720 Included visits
1 604 422 Training set

719 298 Test set

736 479 Excludeda

719 040 Trauma visit

451 Died in ED

16 041 Transfer to non-PED screen hospital
8083 Sepsis meeting PSC during features window

ED indicates emergency department; PED, pediatric emergency department;
PSC, Phoenix Sepsis Criteria
aChildren could be excluded for multiple reasons.

Table 1. Phoenix Sepsis Criteria (PSC) Outcomes in the Study Cohort
Excluding Individuals With Sepsis in the First 4 Hours of Emergency
Department Care

Dataset
Visits with outcome, No. (%) [95%
CI]a

Range across health
systems, %

Training (n = 1 604 422)

PSC sepsis 5634 (0.35) [0.34-0.36] 0.17 to 0.50

PSC shock 2446 (0.15) [0.15-0.16] 0.08 to 0.26

Test (n = 719 298)

PSC sepsis 2639 (0.37) [0.35-0.38] 0.22 to 0.61

PSC shock 1062 (0.15) [0.14-0.16] 0.09 to 0.21

a The outcome definition of suspected infection and sepsis or death included 16 of
8273 patients (5634 in the training cohort and 2639 in the test cohort) with PSC
sepsis (0.19%) who did not meet sepsis organ dysfunction prior to death.
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Performance characteristics for each of the models pre-
dicting PSC sepsis in the temporal validation dataset were ex-
cellent, with AUROC of 0.923 (95% CI, 0.918-0.928) in the lo-
gistic regression models and 0.936 (95% CI, 0.931-0.940) in the
gradient tree boosting models (Table 2). The specificity for the
sepsis models with target sensitivity of 90% ranged from 0.779
to 0.807. These correspond to positive likelihood ratios (LR+)
of 4.067 to 4.674. The Youden cutpoint models for sepsis re-
sulted in sensitivities of at least 0.84 and specificities ranging
from 0.854 to 0.861 with LR+ ranging from 5.788 to 6.179. At
a sensitivity of 90%, the LR+ of the PSC sepsis gradient tree
boosting model was 4.674 with the PPV of 1.7% compared to
the observed overall prevalence of 0.37%. Over all models, the
number needed to evaluate ranged from 45 to 68 (Table 2).

Model results for PSC shock are presented in Table 2.
AUROCs of 0.923 (95% CI, 0.915-0.931) were observed for the
logistic regression and 0.926 (95% CI, 0.918-0.934) for the gra-
dient tree boosting models.

The receiver operating characteristic and precision-recall
curves for the gradient tree boosting models for PSC sepsis and
shock applied to the temporal validation dataset are depicted
in Figure 2. There was minor variability in model performance
by site (PSC sepsis AUROC range, 0.922 to 0.945) (Figure 2). The
receiver operating characteristic and precision-recall curves for
the logistic regression models applied to the temporal valida-
tion set are depicted in eFigure 2 in Supplement 1. Calibration
of the gradient tree boosting and logistic regression models for
the temporal validation set are shown in eFigure 3 in Supple-
ment 1. To allow for comparison with the temporal validation
model performance, model characteristics for all models in the
training dataset are presented in eTable 3 in Supplement 1 with
the ROC and precision-recall curves for PSC sepsis and shock
in the training dataset depicted, respectively, in eFigures 4 and
5 in Supplement 1.

The top 20 features for the gradient tree boosting PSC sep-
sis models with and without Emergency Severity Index are pre-
sented in Figure 3 with many similar predictive features, in-

cluding age-adjusted vital signs, age, and markers of medical
complexity. Models excluding Emergency Severity Index tri-
age data as features had similar performance characteristics,
AUROCs, and area under the precision-recall curves (eTable 4
in Supplement 1). Proportions of missingness of features in the
models, training and validation sets, and by site, are pre-
sented in eTable 5A and 5B in Supplement 1, respectively.

Assessment of fairness in PSC sepsis gradient tree boost-
ing model performance by age, gender, race, ethnicity, lan-
guage, insurance, and site demonstrated AUROC for patients
with Medicaid insurance of 0.940 (95% CI:,0.934-0.946)
compared to commercial payer mean of 0.920 (95% CI,
0.910-0.929). The model otherwise performed similarly
across patient demographic groups (eFigure 6 in Supple-
ment 1). In our stability assessment comparing models
derived on incomplete training data, performance was gener-
ally a few percentage points inferior compared to the primary
analysis of models derived on the complete training set
(eTable 6 in Supplement 1). The lowest performance
observed in this stability analysis was for predicting PSC
shock using logistic regression (AUROC of 0.906 [95% CI,
0.895 to 0.915] for the lowest performing model in our stabil-
ity analysis compared to 0.923 [95% CI, 0.915-0.931]
observed in the primary analysis).

Discussion
In this cohort study, using a large dataset, including a
diverse population, from 5 health systems, we developed
machine learning models predicting the future develop-
ment of sepsis based on EHR data collected early in the ED
course, prior to the development of organ system dysfunc-
tion. Our models achieved robust AUROC measurements
and meaningful likelihood ratios. The strengths of these
results include the successful development of models
capable of early prediction of a rare outcome with excellent

Table 2. Model Performance for Phoenix Sepsis Criteria (PSC) Outcomes in the Heldout Temporal Validation Dataset
for Ridge Logistic Regression (LR) and Extreme Gradient Boosting (XGBoost) Models

Statistic (95% CI)

AUROC Sensitivity Specificity LR+ PPV NNE
PSC sepsis

90% LR
0.923 (0.918-0.928)

0.900 (0.888-0.911) 0.779 (0.778-0.780) 4.067 (4.013-4.122) 0.015 (0.014-0.015) 68 (65-71)

Youden LR 0.844 (0.830-0.858) 0.854 (0.853-0.855) 5.788 (5.688-5.889) 0.021 (0.020-0.022) 48 (46-50)

90% gradient tree
boosting

0.936 (0.931-0.940)

0.900 (0.888-0.911) 0.807 (0.806-0.808) 4.674 (4.612-4.738) 0.017 (0.016-0.018) 59 (57-61)

Youden gradient
tree boosting

0.858 (0.844-0.871) 0.861 (0.860-0.862) 6.179 (6.077-6.282) 0.022 (0.021-0.023) 45 (43-47)

PSC shock

90% LR
0.923 (0.915-0.931)

0.900 (0.881-0.917) 0.778 (0.777-0.779) 4.059 (3.977-4.143) 0.006 (0.006-0.006) 168 (157-179)

Youden LR 0.848 (0.826-0.869) 0.840 (0.840-0.841) 5.314 (5.178-5.454) 0.008 (0.007-0.008) 128 (120-137)

90% gradient tree
boosting

0.926 (0.918-0.934)

0.900 (0.881-0.917) 0.783 (0.782-0.784) 4.157 (4.073-4.243) 0.006 (0.006-0.007) 164 (154-174)

Youden gradient
tree boosting

0.836 (0.813-0.857) 0.857 (0.856-0.857) 5.828 (5.671-5.989) 0.009 (0.008-0.009) 117 (110-125

Abbreviations: AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; LR+, positive likelihood ratio;
NNE, number needed to evaluate.
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performance characteristics. Notably, we meticulously
excluded any children who already exhibited the outcome
of interest at the time of presentation, and we deliberately
avoided including markers of clinical judgment, which can
introduce bias. To our knowledge, this study represents the
first attempt to use robust machine learning models to pre-
dict the Phoenix Sepsis Criteria outcomes in a pediatric ED
population that did not already have sepsis.14,15

Although there have been screening tools for identifica-
tion of patients with sepsis or those who may have increased
sepsis risk in the ED,29-32 there are no previously published mul-
ticenter predictive models of pediatric sepsis in the ED that ex-
clude patients who already have met sepsis criteria within their
first hours of emergency care. Most work in pediatric sepsis
predicts mortality in patients with identified sepsis or pro-
vides screens for risk of sepsis without excluding patients who

have already developed sepsis.25,33-35 There is a distinct and
important role for both prediction of sepsis and for triggers that
help identify patients who already have sepsis to allow for early
treatment. Our work, however, allows for rigorous predic-
tion, using routine EHR data, in those patients who have not
yet developed sepsis. This work indicates that identification
of relevant data for prediction is possible using regularly col-
lected data from the EHR. The strengths of machine learning
modeling and its implementation within the EHR is gaining ac-
ceptance in medicine, especially in instances of difficult di-
agnosis and prognosis.14,36 Important predictive features in our
study included Emergency Severity Index category; vital signs,
including oxygen saturation; age-adjusted shock index; and
markers of medical complexity. This work is a step forward to
achieve the goal of up-stream identification that may allow for
preemptive treatment to improve outcomes.

Figure 2. Extreme Gradient Boosting (XGBoost) Performance for Phoenix Sepsis Criteria (PSC) Sepsis and Shock Outcomes

AUPRC = 0.234 (site 1)
AUPRC = 0.219 (site 2)
AUPRC = 0.163 (site 3)
AUPRC = 0.123 (site 4)

AUPRC = 0.162 (temporal heldout set)

Prevalence = 0.004

Target sensitivity cut point
Youden cut point

AUPRC = 0.102 (site 5)
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AUPRC = 0.065 (site 2)
AUPRC = 0.080 (site 3)
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For PSC sepsis (A and B) and PSC shock (C and D), the gradient tree boosting algorithm area under the receiver operator characteristic (ROC)
curves and area under the precision-recall curves (AUPRC) are shown for the temporal validation dataset.
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Prior work by Scott et al11,12 derived and validated models
in 1 health system to predict septic shock in children already
identified by clinicians as having risk of sepsis, using data
known at the time of ED arrival and with data at 2 hours after
arrival. That work included patients identified by suspected
sepsis order sets and intended to risk stratify patients who did
not yet have shock but in whom clinicians were concerned for
sepsis. Our work, compared to these prior studies, included
an undifferentiated cohort of ED patients. With our multi-
center approach, the current study had strong AUROCs for pre-
diction of sepsis and septic shock compared to prior work.

Use of machine learning for prediction in clinical care must
be balanced with understanding of fairness of the models and
evaluation of biases that may be introduced in the derivation
of models.16 Fortunately, when assessing for model equity we
found similar model performance, except for slightly im-
proved performance in children with Medicaid insurance
compared to those with private insurance. This may be be-
cause most of the cohort had public insurance and therefore
the data used for derivation had majority representation of this
community.

Limitations
Our study encountered challenges and limitations. First, de-
spite efforts to avoid markers of clinical judgment, some out-
comes related to organ dysfunction are influenced by health
care processes. For example, the absence of measured oxy-

gen saturation, an influential feature in the models, is likely
a marker for lack of respiratory distress, which is not easily
captured in the EHR. Our approach of treating missing data is
consistent with prior work, including the Sepsis-3 and PSC
derivations.14,15,37 Second, our best-performing algorithm,
gradient tree boosting, is a complex model, which may pose
challenges for implementation, especially related to explain-
ability. However, our features importance graphs help with ac-
cessibility to clinicians and recent work indicates acceptance
among care providers and patients to harnessing the strength
of the EHR to implement complex models.38,39 Future work,
following implementation science methodologies, will in-
tegrate the output of risk from the models into clinical
workflows.40

The support of sepsis recognition and diagnosis has been
identified as 1 of the greatest challenges to pediatric care.41,42

Our work derives and validates models based on a multi–
health system cohort with differing EHR vendors and differ-
ent EHR instances within the same vendor. Our study ex-
cluded patients with identified sepsis within the feature
window, to concentrate on prediction, not identification of al-
ready developed sepsis. As sepsis is a continuously evolving
clinical entity, any variation of the feature window will affect
the metrics. Additionally, our study included an undifferen-
tiated cohort of patients compared to past work that used co-
horts of patients with clinician concern for sepsis.25-27 The mor-
tality rate in our cohort was less than that in other published

Figure 3. Extreme Gradient Boosting Feature Importance With and Without Emergency Severity Classification (ESI)
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Top 20 features are shown (dark blue indicates a positive association with the
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outcome). ED indicates emergency department; EMS, emergency medical

services; GI, gastrointestinal; HR, hazard ratio; SHAP, Shapley Additive
Explanations.
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work, which included global estimates or cohorts enriched by
intensive care or hospitalized populations.2,3,14 With any rare
outcome, the rate of false positive predictions may pose a risk
of alarm fatigue, and there will always be a need to balance
sensitivity with the rate of false positive detection. The PSC
sepsis gradient tree boosting model, set at 90% sensitivity,
achieved a number needed to evaluate of 59, which one may
argue is a reasonable starting point to identify a disease pro-
cess with significant morbidity and mortality. Our models,
after appropriate prospective validation, will allow for assess-
ment and possible implementation with variable cutpoints of
positive predictive value thresholds to reduce alarm fatigue.
The use of the validated PSC sepsis and septic shock out-
comes in our current work will allow future work to evaluate
the impact of early clinical steps predicated on predictive
model alerts.

Subsequent research should explore the potential inte-
gration of clinical judgment in a 2-step process, which has been
previously shown to be an important component of sepsis
recognition.25 Additionally, although our work included pa-
tients treated in quaternary care pediatric EDs and affiliated
community EDs from 5 distinct health systems and 2 EHR ven-
dors, future work should broaden the scope to encompass gen-
eral ED settings and prehospital care environments. Physi-

ologic data missing not at random are concerning when using
data collected in routine care to predict outcomes and could
result in confounding. Reassuringly, in our analyses the miss-
ingness of data was ranked low in our measures of feature
importance, but future implementation efforts should con-
sider the potential impact of missing data if such rates are
notably different than those observed in our analyses. Future
evaluation of parsimonious models compared to these com-
prehensive models of patient and physiologic features is also
worthwhile.

Conclusions
In conclusion, our study leveraged a large multicenter EHR da-
tabase to identify cases of sepsis and septic shock occurring
within 48 hours in children without sepsis in the initial 4 hours
after ED presentation. We developed and validated models with
high areas under the receiver operating characteristic curve and
meaningful positive likelihood ratios. Limited positive pre-
dictive values underscore the difficulty in predicting the rare
outcome of pediatric sepsis in the ED. Our research highlights
the need for future studies that combine EHR-based models
with clinical judgment to improve prediction.
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