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ARTICLE INFO ABSTRACT

Article history: Purpose: To evaluate and compare the diagnostic accuracy of three Artificial intelligence (Al) models—GPT-4o,
Received 8 May 2025 Canva-GPT, and ECG Reader-GPT—against emergency medicine specialists (EMSs) in electrocardiogram (ECG)
Received in revised form 26 June 2025 interpretation using a standardized and validated test set.

Accepted 27 June 2025 Methods: In this prospective diagnostic accuracy study, 50 ECG questions were selected from the reference text
Keywords: 150 ECG Cases. Thirty EMSs completed the test once; each Al model was evaluated on the same test set daily

over 30 consecutive days. Diagnostic accuracy was compared across predefined ECG subcategories and clinical

case types.

Results: EMSs achieved the highest overall diagnostic accuracy (median: 41.5; IQR: 37.0-43.0), followed closely

by ECG Reader-GPT (median: 39.5; IQR: 39.0-41.0), with no statistically significant difference between them

(p = 0.530). ECG Reader-GPT significantly outperformed both GPT-40 and Canva-GPT across all case categories

(p < 0.001). Subgroup analysis revealed that ECG Reader-GPT performed comparably to EMSs in identifying is-

chemic syndromes, channelopathies and genetic syndromes, and normal ECGs (all p < 0.05); it surpassed

them in interpreting rhythm disorders (p = 0.007).

Conclusion: ECG Reader-GPT, a customized Al model for ECG interpretation, demonstrated diagnostic accuracy

comparable to experienced EMSs and significantly outperformed general-purpose models across all ECG subcat-

egories. These findings highlight the value of domain specialization in developing clinically effective Al tools.

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar tech-
nologies.
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1. Introduction image-based diagnostic tasks such as electrocardiogram (ECG) analysis.

Existing evidence is methodologically limited by small sample sizes,

The integration of open-source artificial intelligence (Al) models
into clinical practice is rapidly expanding, offering physicians enhanced
support in diagnosis, treatment planning, and patient communication.
Al-based clinical decision support systems have shown promising re-
sults in improving diagnostic accuracy and operational efficiency, par-
ticularly in fields such as radiology, pathology, and dermatology [1].
More recently, large language models (LLMs), such as ChatGPT, have
been applied to tasks involving diagnostic reasoning, clinical summari-
zation, and physician-patient communication [2,3].

Despite the increasing adoption of LLMs in healthcare, their applica-
tion in emergency settings remains largely unvalidated, particularly for
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narrow diagnostic spectrums, a lack of domain-specific test cases, and
limited external validation under real-world conditions [4-6]. Giinay
et al. reported that GPT-4 outperformed both emergency medicine spe-
cialists (EMSs) and cardiologists in answering ECG questions derived
from a standardized textbook [4]. However, a subsequent study evaluat-
ing GPT-40, an updated multimodal version, found that it
underperformed relative to both EMSs and cardiologists when tested
on the same dataset [5]. These discrepancies can be partially attributed
to differences in test design and limitations in sample diversity, but
more importantly, to the use of different input modalities.
Conventional LLMs, such as ChatGPT, are designed for text-based
tasks involving language comprehension, generation, and reasoning,
but they lack the intrinsic ability to process visual data [7]. In contrast,
vision-language models (VLMs), such as GPT-4o [8] and Canva-GPT
[9], are capable of integrating visual and textual inputs, thereby
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expanding the potential scope of Al applications to image-based diag-
nostic tasks. Canva-GPT, for example, has demonstrated competence
in interpreting visual content and may thus hold promise for ECG anal-
ysis. Nevertheless, neither GPT-40 nor Canva-GPT was specifically
trained for ECG interpretation. In contrast, customized GPTs created
through OpenAl's platform—such as ECG Reader-GPT [10]—have
emerged for ECG analysis. These models are tailored versions of
ChatGPT, configured through specific instructions and potentially cu-
rated datasets, but without additional supervised model training or ar-
chitectural modifications. Recent commentaries have emphasized the
importance of model specialization and domain-specific training to en-
sure diagnostic reliability and clinical applicability [11].

This study evaluated the diagnostic accuracy of three Al models
—GPT-40, Canva-GPT, and ECG Reader-GPT—in ECG analysis and
compared their performance with that of EMSs using a standardized
and validated dataset. We tested the hypothesis that customized
Al models for ECG interpretation can achieve diagnostic
accuracy levels comparable to those of human experts in ECG
interpretation.

2. Methods
2.1. Study design and setting

This single-center, prospective, observational, cross-sectional diag-
nostic accuracy study was conducted in accordance with the 2024 Dec-
laration of Helsinki. The study protocol was approved by the
Institutional Review Board of Haseki Training and Research Hospital,
Istanbul, Turkey (approval no. 30-2025). Written informed consent
was obtained from all participants prior to enrollment.

Fifty multiple-choice ECG questions were selected and adapted
from the reference textbook 150 ECG Cases [12]. Each question in-
cluded one correct answer and four distractors, and it was catego-
rized into one of six diagnostic groups: rhythm disorders (n = 12),
ischemic syndromes (n = 12), conduction disturbances (n = 12),
channelopathies and genetic syndromes (n = 5), normal ECGs
(n = 5), and other cardiac pathologies (n = 4). Question selection
and validation were performed by two senior experts—one professor
of emergency medicine and one professor of cardiology. Based on ex-
pert consensus, 30 cases were classified as routine ECG presentations
commonly encountered in daily clinical practice, whereas the re-
maining 20 were considered diagnostically challenging. Additionally,
30 ECGs were categorized as potentially life-threatening and 20 as
non-life-threatening but clinically significant.

Life-threatening ECG cases were defined by expert consensus and
aligned with current emergency cardiology guidelines. These included
ST-elevation myocardial infarction (STEMI) or equivalent ischemic syn-
dromes (n = 10), malignant arrhythmias (e.g., ventricular tachycardia
or fibrillation) (n = 8), high-grade atrioventricular blocks requiring ur-
gent intervention (n = 8), high-risk channelopathies and genetic syn-
dromes (n = 5), and acute pulmonary embolism (n = 1). The
remaining 20 ECGs, although not immediately life-threatening, were
still considered clinically relevant.

2.2. Data collection

For human participants, the test was administered using a se-
cure, web-based interface (Google Forms); all questions were pre-
sented in each participant's native language. For Al models, the
same test set was delivered in English, based on pilot testing that
demonstrated improved accuracy and consistency with English-
language prompts.

A pilot trial was conducted prior to the main study to determine the
optimal method of presenting ECG questions to the Al models. When
the questions were presented in a single batch, performance was subop-
timal; however, presenting each question individually resulted in
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higher diagnostic accuracy. Consequently, in the main study, each
question was delivered separately to the Al models to maximize
performance.

All Al models received the same inputs through a standardized pro-
tocol. ECG images were directly uploaded to the model interfaces, along
with accompanying patient history, clinical context, and multiple-
choice answer options. Fig. 1 illustrates an example of the question for-
mat presented to the Al models. Prompts were kept identical across all
models, and no model-specific tuning or optimization was applied.

To ensure performance stability and reproducibility, each Al model
completed the 50-question test once daily for 30 consecutive days;
the question order was randomized to minimize learning effects. In con-
trast, EMSs completed the test once, simulating a typical real-world clin-
ical evaluation. All responses were independently assessed by a
researcher who was blinded to both group assignment and the study
hypothesis.

2.3. Study groups and participants

The study included 30 EMSs certified by the Turkish Ministry of
Health, each with 5-10 years of clinical experience. All participants
were informed of the nature, objectives, and procedures of the study
prior to participation.

Three GPT-based Al models were compared with EMSs. The first was
GPT-4o0, a general-purpose VLM [8]. The second was Canva-GPT, opti-
mized for visual input processing [9]. The third was ECG Reader-GPT, a
customized GPT configured via OpenAl's custom GPT platform for ECG
interpretation. Although its task-specific configuration suggests en-
hanced performance in this domain, it represents a tailored instance
of ChatGPT rather than a separately trained domain-specific model. De-
tailed information regarding its customization methodology and any
additional datasets used has not been publicly disclosed [10].

24. Clinical outcomes

The primary outcome of the study was the diagnostic accuracy of
each Al model and the EMS group in analyzing 50 standardized ECG
cases. Accuracy was defined as the proportion of correctly answered
questions.

Secondary outcomes included subgroup comparisons based on
diagnostic complexity (routine vs. challenging ECGs), clinical severity
(life-threatening vs. non-life-threatening cases), and diagnostic
subcategories (e.g., rhythm disorders, ischemic syndromes, conduction
disturbances).

2.5. Statistical analyses

An a priori power analysis using G*Power (e = 0.05, power = 0.99,
effect size = 1.75) indicated that a minimum of 12 participants in the
EMS group and 12 repeated trials per Al model (36 in total) were suffi-
cient to detect statistically significant differences across the four groups
[7].

Data were analyzed using SPSS software (version 28.0 for Win-
dows; IBM Corp., Armonk, NY, USA). Descriptive statistics for numer-
ical variables were presented as median and interquartile range
(IQR), and minimum-maximum values. The distribution of variables
was assessed using the Kolmogorov-Smirnov test. Given that the
data did not follow a normal distribution, non-parametric statistical
methods were used.

Comparisons of dependent quantitative variables among the four
study groups (EMSs, GPT-40, Canva-GPT, and ECG Reader-GPT) were
conducted using the Friedman test. Post hoc pairwise comparisons
were performed using the Wilcoxon signed-rank test with Bonferroni
correction to control for the risk of type I error due to multiple compar-
isons. Additionally, effect sizes (1) were calculated for all pairwise com-
parisons. A p-value of <0.05 was considered statistically significant.
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An 80-year-old man presented to the hospital with sudden-onset
palpitations and shortness of breath. A cardiac murmur suggestive
of congestive heart failure and aortic regurgitation was noted. Based
on the ECG obtained, what is your most likely diagnosis for this

patient?

a) Ventricular tachycardia

b) Wolff-Parkinson-White syndrome

c) Atrial fibrillation + right bundle branch block
d) Torsades de pointes

e) Atrial fibrillation + left bundle branch block

ECG Interpretation (Clinical Level)

The ECG shows the following key features:

e Irregularly irregular rhythm: There is no consistent P wave before each QRS complex, and the RR

intervals are highly variable.

* Wide QRS complexes: The QRS duration is prolonged (>120 ms), and the complexes exhibit a broad,

notched morphology.

s Absence of P waves: P waves are not discernible, consistent with atrial fibrillation.

¢ Bundle branch block morphology: The QRS complexes are wide and show a "M"-shaped or broad

monophasic R waves in leads V5-V6, and deep, wide S waves in V1—these findings are
characteristic of a left bundle branch block (LBBB).

Most Likely Diagnosis:

e) Atrial fibrillation + left bundle branch block

Fig. 1. Sample ECG interpretation by ECG Reader-GPT.

Caption: This figure shows an ECG interpretation by ECG Reader-GPT in an 80-year-old man presenting with acute palpitations and dyspnea. The model accurately identified atrial fibril-
lation with left bundle branch block (LBBB), demonstrating recognition of key features including an irregular rhythm, absence of P waves, and broad, notched QRS complexes.

3. Results

Table 1 presents the diagnostic accuracy of EMSs and the three Al
models—GPT-40, Canva-GPT, and ECG Reader-GPT—in interpreting all
ECG cases. EMSs achieved the highest overall diagnostic accuracy (me-
dian: 41.5; IQR: 37.0-43.0), significantly outperforming GPT-40 (me-
dian: 26.0; IQR: 23.0-27.0) and Canva-GPT (median: 29.0; IQR:
27.0-30.0) (both p < 0.001; r = 0.593). ECG Reader-GPT (median:
39.5; IQR: 39.0-41.0) also demonstrated significantly higher accuracy
than both general-purpose models (both p < 0.001; r = 0.593) but
did not significantly differ from EMSs (p = 0.530; r = 0.096).

In the subset of 30 routine ECG cases, EMSs again achieved the
highest accuracy (median: 29.0; IQR: 26.5-30.0), followed by ECG
Reader-GPT (median: 23.0; IQR: 22.0-25.0), Canva-GPT (median:
16.5; IQR: 15.0-17.0), and GPT-40 (median: 15.0; IQR: 13.8-16.0). All
pairwise comparisons between groups showed statistically significant
differences (p < 0.01; r = 0.710). For the subset of 20 diagnostically
challenging ECG cases, ECG Reader-GPT outperformed all other groups
(median: 16.0; IQR: 16.0-17.0), significantly exceeding the perfor-
mance of EMSs (median: 12.0; IQR: 10.8-14.0), Canva-GPT (median:
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12.0; IQR: 11.8-13.3), and GPT-40 (median: 10.0; IQR: 8.0-11.0)
(p <0.01; r = 0.826). The performance of EMSs and Canva-GPT was
comparable (p = 0.914; r = 0.029), although both significantly
outperformed GPT-4o (p < 0.01; r = 0.945).

In the subset of 30 life-threatening ECG cases, EMSs achieved a
higher accuracy (median: 24.0; IQR: 21.0-25.3) than GPT-40 (median:
18.0; IQR: 16.0-19.0) and Canva-GPT (median: 19.0; IQR: 18.0-20.0)
(p < 0.001; r = 0.774); they demonstrated performance comparable
to that of ECG Reader-GPT (median: 25.0; IQR: 23.0-26.0) (p = 0.071;
r = 0.359). In the subset of 20 non-life-threatening but clinically signif-
icant ECG cases, EMSs again achieved the highest accuracy (median:
17.0; IQR: 16.0-18.0), followed by ECG Reader-GPT (median: 15.0;
IQR: 13.0-17.0), Canva-GPT (median: 9.0; IQR: 9.0-10.0), and GPT-40
(median: 8.0; IQR: 6.0-9.0); all intergroup differences were statistically
significant (p < 0.01; r = 0.728-0.917).

Table 2 and Fig. 2 present a subgroup analysis based on clinical diag-
nostic categories. For the interpretation of 5 normal ECGs, both ECG
Reader-GPT (median: 4.0; IQR: 3.0-4.0) and EMSs (median: 3.5; IQR:
3.0-4.0) significantly outperformed the general-purpose Al models
(p <0.001; r = 1.945). Regarding 12 cases of conduction disturbances,
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Table 1
Comparison of diagnostic accuracy of Al models and emergency medicine specialists across ECG case types and clinical scenarios.*><

Characteristic GPT-40 Canva-GPT ECG Reader-GPT EMS p
Case difficulty
Routine ECG cases Median 15.0 @b 16.5 > 230" 29.0 <0.001
(n = 30) IQR (25-75) 13.8-16.0 15,0-17,0 22.0-25.0 26.5-30.0

Min. - max. 12.0-19.0 14.0-19.0 21.0-28.0 25.0-30.0
More challenging ECG cases Median 10.0 307 120%™ 16.0 120" <0.001
(n = 20) IQR (25-75) 8.0-11.0 11.8-13.3 16.0-17.0 10.8-14.0

Min. - max. 6.0-14.0 9.0-14.0 14.0-19.0 6.0-17.0
Total ECG cases Median 26.0 3¢ 29.0 b 39.5 415 < 0.001
(n = 50) IQR (25-75) 23.0-27.0 27.0-30.0 39.0-41.0 37.0-43.0

Min. - max. 20.0-31.0 24.0-33.0 35.0-45.0 33.0-46.0
Clinical scenarios
Life-threatening ECG cases Median 18.0 < 19.0 b 25.0 24.0 <0.001
(n = 30) IQR (25-75) 16.0-19.0 18.0-20.0 23.0-26.0 21.0-253

Min. - max. 13.0-21.0 15.0-23.0 22.0-28.0 17.0-27.0
Non-life-threatening ECG cases Median 8.0 3¢ 9.0 b 15.0 < 17.0 <0.001
(n = 20) IQR (25-75) 6.0-9.0 9.0-10.0 13.0-17.0 16.0-18.0

Min. - max. 5.0-11.0 7.0-11.0 13.0-19.0 12.0-19.0

Note: Data are presented as median and interquartile range (IQR), minimum (min), and maximum (max).
* Intergroup comparisons were conducted using the Friedman test; post hoc pairwise comparisons were performed using the Wilcoxon signed-rank test.

*p £0.05, *p £0.01, and ***p < 0.001.

Abbreviations: EMS, emergency medicine specialist; ECG, electrocardiography; GPT-4o, general-purpose vision-language Al model; Canva-GPT, multimodal Al model optimized for visual

input; ECG Reader-GPT, customized Al models for ECG interpretation.
¢ Significant differences vs. Canva-GPT.
b vs. ECG Reader-GPT.
¢ vs. EMSs.

EMSs achieved the highest diagnostic accuracy (median: 10.0; IQR:
9.0-11.0), followed by ECG Reader-GPT (median: 7.5; IQR: 7.0-9.0),
Canva-GPT (median: 7.0; IQR: 6.0-8.0), and GPT-40 (median: 5.0; IQR:
4.0-6.0); all pairwise differences were statistically significant
(p <0.05; r = 0.636-1.173).

In 12 cases of ischemic syndromes, ECG Reader-GPT (median: 10.0;
IQR: 10.0-11.0) and EMSs (median: 10.0; IQR: 9.0-11.0) again signifi-
cantly outperformed both Canva-GPT and GPT-4o (p < 0.001; r =
1.173); there was no significant difference between ECG Reader-GPT
and EMSs (p = 0.313; r = 0.304). A similar pattern was observed in 5
cases of channelopathies and genetic syndromes, such that ECG
Reader-GPT (median: 4.0; IQR: 3.0-4.0) and EMSs (median: 5.0; IQR:
3.0-5.0) performed significantly better than both general-purpose

Table 2

models (p < 0.001; r = 1.740). Concerning 12 cases of rhythm disor-
ders, ECG Reader-GPT achieved the highest diagnostic accuracy (me-
dian: 10.0; IQR: 10.0-11.0), outperforming all other groups, including
EMSs (median: 9.0; IQR: 9.0-10.0); these differences were statistically
significant (p < 0.01; r = 0.853-1.230).

4. Discussion

The role of Al in critical care diagnostics—particularly its accuracy
and applicability—remains an area of intense interest and active re-
search. This study adds to the growing body of evidence by systemati-
cally comparing the diagnostic performance of general-purpose versus
customized Al models for ECG interpretation. Our findings demonstrate

Comparison of diagnostic accuracy of Al models and emergency medicine specialists across ECG subcategories.*™<

Characteristic GPT-40 Canva-GPT ECG Reader-GPT EMS p*
Rhythm disorders Median 8.0 b 9.0 b 10.0 90" <0.001
(n =12) IQR (25-75) 6.8-9.0 8.0-9.0 10.0-11.0 9.0-10.0

Min. - max. 5.0-10.0 7.0-10.0 8.0-12.0 6.0-11.0
Ischemic syndromes Median 7.0 6.0 10.0 10.0 <0.001
(n =12) IQR (25-75) 5.0-8.0 6.0-7.0 10.0-11.0 9.0-11.0

Min. - max. 4.0-9.0 3.0-9.0 8.0-12.0 6.0-12.0
Conduction disturbances Median 5.0 3P 7.0 b 759" 10.0 <0.001
(n=12) IOR (25-75) 40-6.0 6.0-8.0 7.0-9.0 9.0-11.0

Min. - max. 2.0-10.0 4.0-10.0 5.0-12.0 6.0-12.0
Channelopathies and genetic syndromes (n = 5) Median 3,0 b 3.0 b 4.0 5.0 <0.001

IQR (25-75) 2.0-3.0 2.8-3.0 3.0-4.0 3.0-5.0

Min. - max. 1.0-4.0 1.0-4.0 2.0-5.0 3.0-5.0
Normal ECGs Median 1.0 b 1.0 > 4.0 3.5 <0.001
(n=5) I0R (25-75) 0.0-1.0 1.0-1.0 3.0-4.0 3.0-4.0

Min. - max. 0.0-3.0 0.0-2.0 2.0-5.0 2.0-5.0
Other cardiac pathologies Median 2.0 30 3.0 b 40 3097 <0.001
(n = 4) IQR (25-75) 1.0-3.0 3.0-3.0 4.0-40 3.0-4.0

Min. - max. 1.0-4.0 2.0-3.0 3.0-4.0 2.0-4.0

Note: Data are presented as median and interquartile range (IQR), minimum (min), and maximum (max).
* Intergroup comparisons were conducted using the Friedman test; post hoc pairwise comparisons were performed using the Wilcoxon signed-rank test.

*p £0.05, *p £0.01, and ***p < 0.001.

Abbreviations: EMS, emergency medicine specialist; ECG, electrocardiography; GPT-4o, general-purpose vision-language Al model; Canva-GPT, multimodal Al model optimized for visual

input; ECG Reader-GPT, customized Al models for ECG interpretation.
¢ Significant differences vs. Canva-GPT.
b vs. ECG Reader-GPT.
¢ vs. EMSs.
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ECG Reader-GPT . EMSs

Fig. 2. Diagnostic accuracy of Al models and emergency medicine specialists across ECG subcategories.

Caption: ECG Reader-GPT consistently outperformed GPT-40 and Canva-GPT across all subcategories and demonstrated comparable or superior performance to EMSs in rhythm disorders,
ischemic syndromes, channelopathies and genetic syndromes, and other cardiac pathologies.
Abbreviations: EMS, emergency medicine specialist; ECG, electrocardiography; GPT-4o, general-purpose vision-language Al model; Canva-GPT, multimodal Al model optimized for visual

input; ECG Reader-GPT, customized Al models for ECG interpretation.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/

gB03f8.

that customized Al models for ECG interpretation, particularly ECG
Reader-GPT, significantly outperform general-purpose VLMs in ECG
analysis. ECG Reader-GPT exhibited diagnostic accuracy comparable
to, and in some cases exceeding, that of EMSs, especially in complex
and life-threatening ECG cases. These results highlight its potential util-
ity in time-sensitive, high-risk clinical environments.

Previous studies have assessed the diagnostic capabilities of general-
purpose LLMs in ECG analysis, often in comparison to human experts.
Gilinay et al. reported that GPT-4 outperformed both EMSs and cardiol-
ogists in answering multiple-choice ECG questions [4]. However, these
cases relied solely on textual descriptions, inherently favoring LLMs'
strengths in language processing. In a follow-up study, the same authors
evaluated GPT-4o0 using visual ECG inputs and found that its perfor-
mance declined, falling below that of EMSs and cardiologists in routine
cases [5]. These contrasting outcomes highlight the importance of input
modality and task specificity in evaluating Al models. Although LLMs
may excel in text-based tasks, they face challenges when required to
process and interpret visual clinical data [13].

Supporting this observation, Zhu et al. found that ChatGPT-4 V per-
formed moderately well on multiple-choice ECG questions but strug-
gled with open-ended tasks requiring visual waveform interpretation
and quantitative measurement [14]. Similarly, a diagnostic accuracy
study of GPT-4 V across various visual clinical inputs revealed a marked
performance decline relative to text-based tasks, emphasizing its lim-
ited capacity to generalize from linguistic to image-based reasoning
[15]. In agreement with these findings, our study showed that the
general-purpose VLMs, GPT-40 and Canva-GPT, performed significantly
worse than EMSs in visually based ECG analysis. Specifically, GPT-40
achieved a diagnostic accuracy of approximately 50 %, whereas Canva-
GPT reached 58 %. These results likely reflect both the absence of ECG-
specific training and the broader limitations of general-purpose models
in image-driven diagnostic contexts.

In contrast, customized Al models for ECG interpretation, such as
ECG Reader-GPT, demonstrated obviously superior diagnostic accuracy.
Whereas GPT-40 and Canva-GPT attained accuracies of roughly 50 %
and 58 %, respectively, ECG Reader-GPT accurately interpreted nearly
80 % of the ECG cases. These findings highlight the importance of task-
specific training and model specialization in developing clinically effec-
tive medical Al Consistent with our results, Chang et al. reported that
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ECG-focused machine learning models outperformed general-purpose
counterparts in diagnostic accuracy and clinical applicability within car-
diology tasks [7].

Furthermore, our analysis revealed that ECG Reader-GPT consis-
tently outperformed GPT-40 and Canva-GPT across all ECG subcate-
gories. Its advantage was especially pronounced in complex categories
such as ischemic syndromes, channelopathies, and genetic syndromes
—conditions requiring nuanced waveform interpretation beyond basic
quantitative analysis. This superiority likely arises from ECG Reader-
GPT's training on curated, task-specific datasets, enabling it to recognize
clinically relevant patterns often overlooked by general-purpose
models.

ECG Reader-GPT achieved diagnostic performance comparable to
EMSs, particularly in high-risk and complex cases. It matched EMS accu-
racy in detecting ischemic syndromes, channelopathies and genetic
syndromes, and normal ECGs; it exceeded EMS performance in identify-
ing rhythm disorders. These findings support the growing role of cus-
tomized Al models for ECG interpretation as a reliable adjunct in acute
care, where rapid and accurate interpretation is essential. Although
not a replacement for human expertise, such models may help reduce
diagnostic delays, support less experienced clinicians, and promote con-
sistent care in resource-constrained settings.

Our results align with recent studies highlighting the promise of
domain-specific Al in clinical diagnostics. Tison et al. found that ma-
chine learning-based ECG interpretation approaches human-level
accuracy in detecting a broad spectrum of cardiac pathologies [16].
Similarly, Strodthoff et al. reported that Al-enhanced ECG systems
demonstrated performance comparable to that of clinicians across di-
verse diagnostic categories in emergency settings, reinforcing the
value of task-specific models in high-stakes environments [17]. In
parallel, recent work has demonstrated the potential of machine
learning-based approaches in broader cardiovascular contexts, in-
cluding the prediction of obstructive coronary artery disease using
treadmill ECG waveform features [20], mortality risk estimation in
acute pulmonary embolism with deep learning [21], and the applica-
tion of Al tools in the diagnosis and management of coronary artery
disease and atrial fibrillation [22]. Nevertheless, it remains essential
that Al systems serve as supportive tools, rather than primary
decision-makers, in clinical practice [18,19].
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This study had several limitations. First, the diagnostic task was
restricted to a multiple-choice format. Although this enabled stan-
dardized comparisons between Al models and clinicians, it limited
the scope for open-ended diagnostic reasoning. Neither group was
able to provide justifications or elaborate on their choices, potentially
constraining the demonstration of their full interpretive capabilities.
For example, a model might have correctly identified a STEMI and
suggested appropriate clinical management, but if it failed to specify
the precise STEMI subtype, the response was deemed incorrect. Addi-
tionally, as the original power analysis was designed for comparisons
based on total ECG diagnostic accuracy, results from smaller subsets
should be interpreted with caution. Although we calculated effect
size estimates for pairwise comparisons, some values exceeded 1.0,
particularly within ECG subcategories with limited sample sizes.
This overestimation reflects statistical inflation rather than the actual
magnitude of effect and is likely due to insufficient statistical power
in these subgroups. Second, while Al models completed the test
over 30 repeated trials, EMSs participated in a single test session.
This introduces an imbalance in data granularity and may favor Al
performance through averaging effects. Future research should aim
to mitigate this bias by increasing the human sample size or incorpo-
rating repeated human testing to allow more direct comparisons.
Third, the ECG cases were adapted from a widely used reference text-
book. Although this ensured consistency and clinical validity, it intro-
duces the possibility that Al models—particularly those pretrained on
large-scale, publicly available datasets—may have encountered simi-
lar content during training, potentially inflating performance. We
cannot exclude the possibility that questions and answers similar or
identical to those in our validation set were incorporated as part of
its configuration or input examples. This may have contributed to
its high diagnostic accuracy and represents a potential source of
bias that should be addressed in future external validations. Fourth,
a key limitation was the lack of transparency surrounding the devel-
opment of ECG Reader-GPT. Detailed information regarding its model
architecture, training data sources, and optimization methodologies
has not been disclosed. This opacity hinders assessments of the
model's generalizability, interpretability, and susceptibility to biases.
Domain-specific Al models for clinical use should prioritize transpar-
ency, including the open sharing of training datasets, model architec-
tures, and evaluation metrics, to enable independent validation and
enhance trust in Al-assisted diagnostics. Finally, all ECGs in this
study were presented as clean, high-resolution digital tracings. In
contrast, real-world clinical environments often involve suboptimal
recordings affected by artifacts, noise, or incomplete data. Therefore,
further external validation is required to determine the robustness
and applicability of these Al models under real-world conditions.

5. Conclusions

This study demonstrated that customized Al models for ECG inter-
pretation—particularly ECG Reader-GPT—substantially outperformed
general-purpose VLMs, such as GPT-40 and Canva-GPT, across all ECG
subcategories. ECG Reader-GPT achieved higher overall diagnostic
accuracy and demonstrated performance comparable to that of
experienced EMSs. It exceeded EMS performance in interpreting
rhythm disorders and performed similarly in complex and life-
threatening cases, highlighting its potential utility in high-stakes
clinical environments.

These findings underscore the importance of task-specific training
and model specialization in the development of clinically effective Al
tools. Although Al should currently function as an adjunct rather than
a replacement for human expertise, customized Al models for ECG in-
terpretation such as ECG Reader-GPT may offer valuable opportunities
to enhance diagnostic accuracy, reduce inter-clinician variability, and
support decision-making in time-sensitive emergency care settings.
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