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BACKGROUND: Chest radiographs (CXRs) are still of crucial importance in primary di-
agnostics, but their interpretation poses difficulties at times.

RESEARCH QUESTION: Can a convolutional neural network-based artificial intelligence (AI)
system that interprets CXRs add value in an emergency unit setting?

STUDY DESIGN ANDMETHODS: A total of 563 CXRs acquired in the emergency unit of a major
university hospital were retrospectively assessed twice by three board-certified radiologists,
three radiology residents, and three emergency unit-experienced nonradiology residents
(NRRs). They used a two-step reading process: (1) without AI support; and (2) with AI
support providing additional images with AI overlays. Suspicion of four suspected pathol-
ogies (pleural effusion, pneumothorax, consolidations suspicious for pneumonia, and nod-
ules) was reported on a five-point confidence scale. Confidence scores of the board-certified
radiologists were converted into four binary reference standards of different sensitivities.
Performance by radiology residents and NRRs without AI support/with AI support were
statistically compared by using receiver-operating characteristics (ROCs), Youden statistics,
and operating point metrics derived from fitted ROC curves.

RESULTS: NRRs could significantly improve performance, sensitivity, and accuracy with AI
support in all four pathologies tested. In the most sensitive reference standard (reference
standard IV), NRR consensus improved the area under the ROC curve (mean, 95% CI) in the
detection of the time-critical pathology pneumothorax from 0.846 (0.785-0.907) without AI
support to 0.974 (0.947-1.000) with AI support (P < .001), which represented a gain of
30% in sensitivity and 2% in accuracy (while maintaining an optimized specificity). The most
pronounced effect was observed in nodule detection, with NRR with AI support improving
sensitivity by 53% and accuracy by 7% (area under the ROC curve without AI support, 0.723
[0.661-0.785]; with AI support, 0.890 [0.848-0.931]; P< .001). Radiology residents had smaller,
mostly nonsignificant gains in performance, sensitivity, and accuracy with AI support.

INTERPRETATION: We found that in an emergency unit setting without 24/7 radiology
coverage, the presented AI solution features an excellent clinical support tool to non-
radiologists, similar to a second reader, and allows for a more accurate primary diagnosis and
thus earlier therapy initiation. CHEST 2024; 166(1):157-170
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Take-home Points

Research Question: Can a chest radiograph-
interpreting artificial intelligence tool add value in
an emergency unit setting?
Results: In all four pathologies (pneumothorax,
pleural effusion, consolidation with suspected pneu-
monia, and nodules) that were tested on an emer-
gency unit-derived cohort with 563 chest
radiographs, nonradiology residents significantly
improved their performance with AI support (P <

.001 for all pathologies) and were able to improve
their sensitivity and accuracy for all pathologies while
maintaining the same (optimized) specificity.
Interpretation: The examined artificial intelligence
tool has the potential to effectively assist non-
radiologists in routine clinical practice within the
emergency unit, serving as a “second reader.” This
could lead to more accurate initial diagnostics and
enhanced patient care by possibly initiating therapy
at earlier stages.
Chest radiographs (CXRs) with typical indications such
as suspected pneumonia, pneumothorax, pleural
effusion, nodules, or catheter position checks remain a
key tool in primary diagnostics, with a vast number of
images ordered globally every day and a substantial
impact on public health.1-5 Especially in the emergency
unit, the CXR often serves as an initial assessment of
whether a disease is acute and thus requires immediate
treatment (eg, pneumothorax or pneumonia). However,
interpretation is not always straightforward; in
particular, projection phenomena, superimpositions,
and similar representations of different findings can
complicate the assessment, which is why a high level of
expertise is usually required for accurate evaluation.6-8

This issue primarily affects nonradiologists who do not
regularly interpret diagnostic imaging but are required
ABBREVIATIONS: AI = artificial intelligence; AUC = area under the
receiver-operating characteristic curve; BCR = board-certified radiol-
ogist; CXR = chest radiograph; NRR = nonradiology resident; RFS =
reference standard; ROC = receiver-operating characteristic; RR =
radiology resident; wAI = with AI support; woAI = without AI support
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to make clinical decisions based on image findings in
emergency units without 24/7 radiology coverage or in
case of long reporting times.9

Recently, several artificial intelligence (AI) algorithms
have shown the potential to match or surpass health care
professionals, including many CXR-interpreting
algorithms.10-17 These solutions offer the potential not
just to decrease missed findings but also to streamline
workflows, possibly enhancing patient care.18-22 The
majority of common CXR-interpreting algorithms have
been primarily trained on public data using natural
language processing and have been validated on a subset
of these data sets.23-26 In previous studies, we have
shown that public data have limitations, manual
annotations significantly improve performance, and
external validation is essential.27-29

The current study evaluated a CXR-interpreting AI
algorithm that was trained on both public and
expert-labeled data from multiple hospitals, detecting
consolidations suspicious for pneumonia,
pneumothorax, nodules, and pleural effusions. This is
a follow-up study to a clinically oriented validation
study comparing the performance of the algorithm in
an emergency unit scenario with that of radiology
residents (RRs) and nonradiology residents (NRRs)
using consensus reading by three board-certified
radiologists (BCRs) as the gold standard.30 The
current study delves deeper by incorporating an
additional AI-assisted reading by the same nine
readers following a washout period of approximately
12 months. In doing so, the gains in performance,
sensitivity, and accuracy associated with the provided
AI assistance can be accurately quantified. Based on
our initial study results, we anticipate that the AI
tool could be of particular interest to nonradiologists
in an emergency unit setting without 24/7 radiology
coverage.
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Study Design and Methods
Approval of the institutional ethics committee was obtained for this
study (approval number 19-541). Informed consent was waived due
to the retrospective character of the study.

Data Selection and Image Annotation

The study cohort used included a total of 563 CXRs, all acquired in the
emergency units of a large university/primary care hospital (University
Hospital of LMU Munich). Rudolph et al30,31 provide a detailed
description of the study cohort, including a flowchart of enrollment.
Included cases were identified by a full-text search based on
radiology reports from 2000 to 2018. The inclusion criteria were:
presentation to one of the hospital’s emergency units (multiple sites),
patient age $ 21 years (legal age in the United States), and the
presence of posterior-anterior projection in upright positioning.
Through preselection by an experienced RR, a data set was created
that represents common findings from the emergency unit with a
balanced prevalence (approximately 10%-20% each). The collective
includes the following findings: images without suspected
pathologies, pleural effusions, pneumothoraces, consolidations
suspicious for pneumonia, and nodules. These pathologies cover a
significant portion of acutely relevant and/or easily overlooked
findings.32 Of these four pathologies, malignant neoplasms of the
lung and pneumonia are among the top five respiratory diseases in
terms of global burden.33

Posterior-anterior projections of identified CXRs were exported as
DICOM files and anonymized. Data were analyzed in a two-stage
reading study by a total of nine readers: three BCRs (17, 9, and 7
years of experience, respectively, in thoracic imaging at the time of
the initial reading study [constituted the reference standard (RFS)]),
three RRs (4, 3, and 2 years of experience; the RR who performed
the preselection did not participate in the reading), and three
emergency unit-experienced NRRs (from cardiology [4 years of
emergency unit experience at baseline], gastroenterology [3 years of
emergency unit experience], and traumatology [1 year of emergency
unit experience]).

In the first reading (Reading I), the 563 CXRs were evaluated by all
readers regarding the aforementioned pathologies. The evaluation
was performed on a 5-point Likert scale: 0, no suspicion; 1, unlikely;
2, possible; 3, likely; and 4, safe presence. Regarding nodules, readers
were primarily directed to assess any nodule of diverse entities,
including benign granulomas, a category we denote as “simple
nodule detection” in subsequent text. If a nodule was identified
(Likert scale > 0), readers were also prompted to assess whether
they deemed an additional CT scan to be necessary. Documentation
was conducted using spreadsheets, wherein each reader was required
to assign a confidence score on the Likert scale individually to each
pathology for both the right and left hemithorax in every case. The
final score assigned for that pathology was the higher of the scores
from the right/left hemithorax evaluations. The corresponding results
have already been published (with a focus of AI validation29,30 and
interobserver agreement31).

The second reading took place after a washout period of approximately
12 months. In Reading II, the same readers re-assessed the same
images with AI support (wAI) according to the same methodology
mentioned earlier. Readers were instructed not to access their ratings
from Reading I. The AI support included a visual representation of
the algorithm results in the form of overlays on secondary captures
with AI confidence values of 4 to 10 (4 ¼ low confidence, 10 ¼ high
confidence) (Fig 1). Neither the readers (in both Reading I and
Reading II) nor the AI algorithm had access to preliminary CXR
examinations or clinical parameters.
chestjournal.org
AI Algorithm

The AI algorithm (including the version/release) corresponds to the
one used from the first validation study30 and is described as follows.
The chosen network is a single-shot object detection network that
consists of a residual network-based backbone followed by a
convolutional feature pyramid network. Then, based on the
respective pyramid layers, a predictor network estimates the
respective class probabilities on different scales. Input images are
resized to a shape of 1,025 � 1,025 by applying bilinear
interpolation and preserving the original aspect ratio. The resulting
pixel values are transformed by using a robust intensity
normalization technique. Finally, image augmentation is applied
using left/right image flip, random cropping and scaling, random
rotations, and (inverse) gamma transforms. The detection system for
pneumothorax, nodule, consolidation, and pleural effusion is trained
in a multiclass setting by jointly classifying and detecting these
abnormalities. The feature extractor generates candidates in an
abstract feature space that are consumed by the discriminator
subnetwork to compute probabilities of abnormality existence in the
image subregion of interest. A graphic illustration can be found in
Figure 2 from Rudolph et al.30 This fully convolutional architecture
processes the entire image in a single shot while analyzing its
content on multiple scales to capture both global and local
comorbidities present inside the image. The network is trained by
optimizing a threefold loss term, consisting of: (1) a classification
loss based on the focal loss34; (2) a coordinate regression loss based
on the overlap of bounding boxes; and (3) a bounding box-based
centerness loss, which is based on weighted binary cross entropy.

Training data cover acquisitions from all main vendors and contain
images from 18 sites distributed throughout Europe, Asia, North
America, and South America. Data were extracted based on
sequential sampling and preselected by applying natural language
processing to associated radiology reports (if available). This strategy
is essential to identify low-prevalent cases with pleural effusion,
pneumothorax, consolidation, or nodule. To train the algorithm as
described earlier, an RFS that includes location information encoded
as tight boxes around the respective abnormality as well as the
abnormality label is required. This is established by a majority voting
of BCRs in a multistage setup. For each RFS to be as robust as
possible, each radiologist is trained on the task using predefined
training material, including detailed annotation specifications as well
as tool training. In addition to the structured annotation process,
data are reviewed regularly and, if necessary, updated. More details
on the data distribution of different pathologies are shown in Table 1.

Image Analysis, Results Quantification, and Statistical
Analysis

The performances of the AI algorithm and the RR and NRR readers
(without AI support [woAI] and with AI support [wAI]) were
quantified by receiver-operating characteristic (ROC) analysis and
calculation of the area under the ROC curve (AUC) with CIs and
the DeLong test for AUC woAI/wAI comparison (R package
“pROC,” function “ci,” and “roc.test” method “DeLong”35,36). The
BCR’s reading served as the gold standard.

To form RFSs that allow a yes-or-no call but also reflect the diagnostic
uncertainty of the readers, individual Likert scale evaluations were
pooled as follows. In the very specific RFS I, scores 0 to 3 are scored
as negative and only 4 as positive; in the very sensitive RFS IV, scores
1 to 4 are scored as positive and only 0 as negative (Table 2). The
intermediate RFS II/III are formed as described in Table 2. The final
RFSs (RFS I-IV), which take into account the readings of all three
BCRs, were determined based on the principle of majority voting. The
results from the individual BCR readings were thus combined into
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Figure 1 – A-D, Examples of artificial intelligence secondary captures. A, Correctly identified bilateral consolidations that are suspicious for pneumonia
considering the depth of inspiration. B, Both the right-sided seropneumothorax with basal air-fluid level as well as the shadowing in the left costo-
diaphragmatic recess (possible pleural effusion or pleural fibrosis) were identified. C, The solitary nodule in the left lower lung was correctly identified.
D, In case the artificial intelligence algorithm did not identify any of the four pathologies on the chest radiograph, the image was marked as “No Finding
Detected.”
composite assessments. We incorporated the BCRs’ evaluations derived
from the AI-assisted reading as we believe that this approach ensures the
highest possible diagnostic accuracy. Artificial RR/NRR consensus was
formed by summing up the individual scores of the RRs/NRRs, finally
leading to theoretically 15-level confidence scores (3 � 5).

ROC curves of the woAI reading were used to approximate operating
points to the maximal sum of sensitivity and specificity according to
TABLE 1 ] Training Data in the Different Pathologies

Pathology
Training (Total/Po

Negatives)

Pneumothorax (AP þ PA) 11,260/1,068/1

Pleural effusion (PA) 10,276/2,042/

Consolidation suspicious of pneumonia
(AP þ PA)

11,622/5,653/

Nodules (PA) 9,784/4,986/4

Note that the training data did not change compared with the first study beca
under the receiver-operating characteristic curve; PA ¼ posterior-anterior.
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Youden J statistics.37 The resulting diagnostic metrics for the
optimized operating points (accuracy, sensitivity, specificity,
positive and negative predictive values, false-positive rate, and
false-negative rate) were calculated. To compare ROC curves of
both readings, RR/NRR consensus ROCs (smoothened by the more
finely graded Likert scale as mentioned earlier) were used for a
further statistical ROC curve fitting by applying a linear model
fitting to the quantiles of the sensitivities and specificities (R
sitives/ Validation (Total/Positives/
Negatives)

Internal Validation
(AUC)

0,192 318/67/251 0.980

8,234 332/74/258 0.995

5,969 540/261/279 0.960

,798 444/138/306 0.950

use the same algorithm was used.30 AP ¼ anterior-posterior; AUC ¼ area
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TABLE 2 ] Tabular Representation of the Formation of RFS I to IV Based on Readings of the BCRs

Reference Standard
Score 0

“No Suspicion”
Score 1
“Unlikely”

Score 2
“Possible”

Score 3
“Likely”

Score 4
“Safe Presence”

RFS I Negative Negative Negative Negative Positive

RFS II Negative Negative Negative Positive Positive

RFS III Negative Negative Positive Positive Positive

RFS IV Negative Positive Positive Positive Positive

The 5-level Likert-based confidence scores were divided into binary yes-or-no calls of different sensitivity for each BCR. A consensus was formed from the
three readings, representing the final RFSs. This procedure was applied pathology-specifically to all BCR readings and all CXRs. BCR ¼ board-certified
radiologist; CXR ¼ chest radiograph; RFS ¼ reference standard.
package “pROC,” function “smooth,” method “binormal”35).
Continuously extractable operating points on the fitted curves
allowed to quantify the AI-associated gain in sensitivity/accuracy,
for example, while maintaining a fixed specificity. This fixed
chestjournal.org
specificity by definition was derived again from Youden statistics
applied to the fitted ROC curve of the non-AI-assisted reading. All
statistical calculations and visual illustrations were performed by
using the open-source programming language R.38
Results
The values for AUC, sensitivity, and accuracy given
here assume values between 0 and 1, with values
close to 1 indicating better performance/sensitivity/
accuracy. P values < .05 are considered statistically
significant.

Pneumothorax

Figure 2 illustrates the assessment in the pathology
pneumothorax, featuring ROC curves, fitted ROC
curves, and barplots depicting alterations in sensitivity
and accuracy (from woAI reading to wAI reading). RRs
as well as each individual NRR benefited from AI
assistance, which could be shown for all applied RFSs
(RAW DATA). When considering the most sensitive
RFS IV, the AI performed with an AUC of 0.971
(95% CI, 0.947-0.995), and RRs and NRRs benefited
from AI assistance. The RR consensus (RAW DATA)
already showed good performance woAI with an AUC
of 0.973 (95% CI, 0.943-1.000) but tended to improve
wAI to an AUC of 0.990 (95% CI, 0.972-1.000; P ¼ .17).
The NRR consensus performance (RAW DATA)
significantly increased from a woAI AUC of 0.846
(95% CI, 0.785-0.907) to a wAI AUC of 0.974 (95% CI,
0.947-1.000; P < .001). Youden operating point
optimization based on the fitted woAI ROC curves
revealed specificities of 0.964 for the RR consensus and
0.953 for the NRR consensus.

By using the fitted wAI ROC curves for an operating
point approximation to these preserved specificities, the
associated sensitivities increased from 0.977 to 0.988
(1% increase) for the RR consensus and from 0.714 to
0.928 (30% increase) for the NRR consensus. Associated
accuracies increased from 0.966 to 0.967 (0% increase,
RR consensus) and from 0.928 to 0.950 (2% increase,
NRR consensus), respectively. Thus, RRs with an
excellent baseline performance only benefited slightly
from AI assistance, but AI assistance considerably
increased the pneumothorax detection sensitivity/
accuracy of NRRs by 30%/2%.

Pleural Effusion

The outcomes pertaining to pleural effusion are
presented in Figure 3. RRs and all individual NRRs
could benefit from AI assistance in almost all
reference standards (RAW DATA, except RR
consensus in RFS I [no significant change here]). AI
showed an AUC of 0.980 (95% CI, 0.969-0.992) for
the clinically very relevant RFS IV. RR consensus
already performed well in woAI Reading with an
AUC of 0.968 (95% CI, 0.952-0.983) and improved
wAI to an AUC of 0.989 (95% CI, 0.980-0.998; P <

.01). The NRR consensus improved from an AUC of
0.855 (95% CI, 0.815-0.894) woAI to 0.949 (95% CI,
0.924-0.974) wAI (P < .001). The operating point
optimized on the fitted plots in the woAI Reading
according to Youden operating point optimization
showed a specificity of 0.904 for the RR consensus
and 0.847 for the NRR consensus. Maintaining this
specificity, the fitted wAI ROC curves showed an
increase in sensitivity from 0.932 to 0.987
(6% increase) for the RR consensus and from 0.820
to 0.985 (20% increase) for the NRR consensus.
Accuracy increased accordingly from 0.910 to 0.923
(1% increase, RR consensus) and from 0.840 to 0.879
(5% increase, NRR consensus). With already good
performance woAI, RRs saw a slight improvement
with AI support. NRRs, on the other hand, improved
161

http://chestjournal.org


Figure 2 – Evaluation for pathology pneumothorax. The first row shows performance analyses for all different board-certified radiologists’ reading-based RFS (RFS I-IV, from the very specific reading in RFS I to the
very sensitive reading in RFS IV) considering the RAW data (no curve fitting). ROC curves of RR and NRR consensus calculated from the sums of the reading scores, the curves of the NRR individual readings
(NRR1, NRR2, and NRR3) and the AI algorithm are plotted in each diagram. For the human readers, the dashed lines represent without AI support Reading I and the continuous lines with AI support Reading II.
The points marked on the ROC curves represent the operating points optimized according to Youden statistics, to which the metrics shown there also refer. AUC values are shown in the lower right corner with
95% CIs. The second row shows FITTED ROC data. RR/NRR consensus raw data were used for a statistical ROC curve fitting. For RFS I, statistical ROC curve fitting failed due to an NRR/RR consensus raw data
ROC providing too few data points. Operating points on the woAI ROC curves (Reading 1, dashed lines) were approximated according to Youden statistics, and the resulting “iso-specificities” are illustrated by
vertical lines. Operating points on the wAI ROC curves (Reading 2, continuous lines) were approximated to the intersections with the iso-specificity lines. The diagnostic operating point metrics are illustrated in
tabular form on the bottom right. In the third row, barplots show the relative change in sensitivity and accuracy from the without AI support to the with AI support reading, based on the preserved iso-specificities.
The evaluation shows that especially the NRR readers can improve significantly with AI support. In the clinically relevant RFS IV, the increase in sensitivity is 30% and the increase in accuracy is 2%. acc¼ accuracy;
AI ¼ artificial intelligence; AUC ¼ area under the receiver-operating characteristic curve; fnr ¼ false-negative rate; fpr ¼ false-positive rate; npv ¼ negative predictive value; NRR ¼ nonradiology resident; ppv ¼
positive predictive value; RFS ¼ reference standards; ROC ¼ receiver-operating characteristic; RR ¼ radiology resident; sens ¼ sensitivity; spec ¼ specificity.
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Figure 3 – Evaluation for pathology pleural effusion. Performance analysis was performed analogously to the other pathologies (see caption of Figure 2). In the clinically relevant RFS IV (most sensitive), there is a
considerable improvement of NRRs’ performance with a sensitivity increase of 20% and an accuracy increase of 5%. The RR also improved with AI support (sensitivity þ6%, accuracy þ1%). acc ¼ accuracy; AI ¼
artificial intelligence; AUC ¼ area under the receiver-operating characteristic curve; fnr ¼ false-negative rate; fpr ¼ false-positive rate; npv ¼ negative predictive value; NRR ¼ nonradiology resident; ppv ¼
positive predictive value; RFS ¼ reference standards; RR ¼ radiology resident; sens ¼ sensitivity; spec ¼ specificity.
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significantly, increasing their sensitivity by 20% and
accuracy by 5%.

Consolidations Suspicious for Pneumonia

Figure 4 shows the results for consolidations suspicious
for pneumonia. RRs and all individual NRRs could
benefit from AI assistance in all reference standards
(RAW DATA). AI showed an AUC of 0.925 (95% CI,
0.897-0.953) for the clinically very relevant RFS IV. RR
consensus had an excellent performance with an AUC of
0.927 (95% CI, 0.901-0.953) already in the first reading
woAI and improved to an AUC of 0.937 (95% CI, 0.911-
0.963) wAI (P ¼ .52). The NRR consensus improved
from an AUC of 0.836 (95% CI, 0.797-0.875) to an AUC
of 0.925 (95% CI, 0.897-0.952; P < .001). The
specificity optimized by Youden statistics in the woAI
reading (FITTED DATA) was 0.867 for the RR
consensus and 0.803 for the NRR consensus. Upon
holding this specificity constant, the fitted wAI ROC
curves showed an increase in sensitivity from 0.888 to
0.944 (6% increase) for the RR consensus and from
0.755 to 0.973 (29% increase) for the NRR consensus.
Accuracy increased from 0.873 to 0.888 (2% increase)
for the RR consensus and from 0.790 to 0.849 for the
NRR consensus (7% increase). In summary, with a very
good performance, RRs could marginally improve woAI
with AI support. In contrast, NRRs improved
significantly with AI support (increase in sensitivity,
29%; increase in accuracy, 7%)

Nodules

Results for nodules are provided in Figure 5. Both RRs
and all individual NRRs were able to benefit from AI
assistance in simple nodule detection in all reference
standards (Fig 5A, RAW DATA). However, when
considering the clinically relevant nodules in which
BCRs indicated CT imaging for further assessment, RRs
benefited only slightly, but NRRs benefited very
significantly from AI support (Fig 5B, RAW DATA).

Regarding the simple nodule detection in the clinically
relevant RFS IV, AI performed with an AUC of 0.938
(95% CI, 0.913-0.962), demonstrating the best
performance of all ROC curves (Fig 5A). RR consensus
improved its performance with AI assistance from an
AUC of 0.797 (95% CI, 0.742-0.853) woAI to 0.860
(95% CI, 0.815-0.906) wAI (P < .05). For NRR
consensus, the change was from 0.723 (95% CI, 0.661-
0.785) woAI to 0.890 (95% CI, 0.848-0.931) wAI
(P < .001). According to Youden statistics, optimized
operating points on the fitted data of the woAI reading
164 Original Research
resulted in specificities of 0.845 for the RR consensus
and 0.778 for the NRR consensus. When these
specificities were kept constant, there was an increase in
sensitivity from 0.677 to 0.889 (31% increase) for the RR
consensus and from 0.585 to 0.894 (53% increase) for
the NRR consensus on the fitted graphs wAI. Accuracy
increased from 0.818 to 0.852 for the RR consensus
(4% increase) and from 0.746 to 0.797 (7% increase) for
the NRR consensus.

Concerning clinically relevant nodules with additional
CT imaging recommended by the BCRs, AI showed the
best performance of all ROC curves in the clinically
relevant RFS IV with an AUC of 0.931 (95% CI, 0.897-
0.964) (Fig 5B). RR consensus showed an AUC of 0.830
(95% CI, 0.764-0.895) woAI, comparable to 0.836
(95% CI, 0.773-0.900) in the second reading wAI (P ¼
.86). NRR consensus improved from 0.720 (95% CI,
0.648-0.792) woAI to 0.751 (95% CI, 0.681-0.821) wAI
(P ¼ .40). Operating points based on fitted data and
woAI reading yielded a specificity of 0.943 for RR
consensus and 0.780 for NRR consensus. By maintaining
these specificities, there was a sensitivity increase on the
fitted ROC curves of the woAI reading from 0.988 to
0.998 (1% increase) for the RR consensus and from
0.726 to 0.959 (32% increase) for the NRR consensus.
Correspondingly, accuracy changed from 0.947 to 0.948
(0% increase) for RR consensus and from 0.775 to 0.797
(3% increase) for NRR consensus.

In summary, RRs significantly improved their
performance in simple nodule detection with AI support
(increase in sensitivity, 31%; increase in accuracy, 4%)
but did not significantly improve in the detection of
clinically relevant nodules (for which further workup is
required). The NRRs, however, improved significantly
both in pure nodule detection (increase in sensitivity,
53%; increase in accuracy, 7%) and in the detection of
clinically relevant nodules (increase in sensitivity, 32%;
increase in accuracy, 3%).
Discussion
The current study showed that AI support for lung
pathology detection resulted in significant performance
gains for NRR readers for all pathologies tested.
Although preserved specificities (according to Youden
optimization) remained the same, sensitivities and
accuracies improved, in some cases dramatically, with
AI support: The most significant effect was observed in
the detection of nodules, with the NRR readers
increasing their sensitivity by up to 53% and their
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Figure 4 – Evaluation for pathology consolidation suspicious for pneumonia. The analysis was performed similarly to the other pathologies (see caption of Figure 2). For RFS I, statistical ROC curve fitting failed
because the NRR/RR consensus ROC raw data provided too small a number of data points. In the clinically relevant RFS IV, there is a substantial performance gain in the NRR consensus group with AI support
(sensitivity, þ29%; accuracy, þ7%). The RRs also improved slightly with AI support (sensitivity, þ6%; accuracy, þ2%). acc ¼ accuracy; AI ¼ artificial intelligence; AUC ¼ area under the receiver-operating
characteristic curve; fnr ¼ false-negative rate; fpr ¼ false-positive rate; npv ¼ negative predictive value; NRR ¼ nonradiology resident; ppv ¼ positive predictive value; RFS ¼ reference standard; ROC ¼ receiver-
operating characteristic; RR ¼ radiology resident; sens ¼ sensitivity; spec ¼ specificity.
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Figure 5 – Evaluation for pathology nodules with (A) simple nodule detection only and (B) clinically relevant nodule detection for which an additional CT scan was recommended by the board-certified radiologists.
Both RRs and NRRs were able to significantly increase their detection rate for nodules. In simple nodule detection in the clinically relevant RFS IV, the sensitivity increase in the RR consensus was 33% (with an
accuracy increase of 4%) and in the NRR 53% (with an accuracy increase of 7%). Considering the clinically more relevant, potentially malignant nodules in RFS IV, NRR improved with AI support
(sensitivity, þ32%; accuracy, þ3%). The RRs had similar performance values with AI support (sensitivity, þ1%; accuracy, þ/- 0%). acc ¼ accuracy; AI ¼ artificial intelligence; AUC ¼ area under the receiver-
operating characteristic curve; fnr ¼ false-negative rate; fpr ¼ false-positive rate; npv ¼ negative predictive value; NRR ¼ nonradiology resident; ppv ¼ positive predictive value; RFS ¼ reference standards; RR ¼
radiology resident; sens ¼ sensitivity; spec ¼ specificity.
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accuracy by up to 7% wAI (RFS IV). The effects were
less pronounced for the RRs, who displayed a high level
of performance at baseline without AI support. In a
prior study, we showed that this AI algorithm can mimic
the performance level of RRs for most pathologies, and
we postulated that NRRs might potentially benefit from
the AI results.30 This assumption was quantitatively
confirmed in the current study.

Impact on Individual Reader Performance

Non-radiologists who may be uncertain about CXR
diagnostics could find increased confidence by being
aware of the enhanced performance achieved with AI
support. This is particularly relevant when a radiology
department lacks round-the-clock coverage or
experiences prolonged reporting times due to an
increased workload. In such cases, an AI algorithm
could serve as a substitute for a radiologist, functioning
as a technical “second reader.” Considering that night
and weekend shifts are typically covered by proficient
RRs, and given the comparable performance of the AI
algorithm for the tested pathologies, there is potential
for the algorithm to sustain this level of proficiency.

Impact on Patient Care

From the patient’s point of view, the improved
performance enhances primary care during shift times.
This is particularly crucial for time-critical pathologies
requiring urgent treatment such as pneumothoraces.
Considering that NRRs could enhance their sensitivity in
detecting pneumothoraces by up to 30% (RFS IV), it is
plausible that most NRRs missed relevant findings
requiring urgent treatment without AI support. In
addition to identifying pneumothorax, primary
diagnostics play a crucial role in identifying pathologies
such as consolidation suspicious for pneumonia and
pleural effusion. A meticulous initial assessment can
minimize the need for subsequent visits to the emergency
unit and prevent inappropriate discharges. Early
detection of nodules may indicate the presence of a
primary lung tumor or a metastatic oncologic disease.
Although these findings are usually not time critical, if
they are the underlying cause of acute thoracic symptoms,
they enable further clinical triage of the patient and can
alleviate the burden on the emergency unit.

Impact on the Daily Work of Radiologists

From the radiologist’s perspective, an NRR-enhancing
AI algorithm can reduce the daily workload. It is
conceivable, for example, that a radiologist on call will
be called significantly less often for “trivial” findings and
168 Original Research
can therefore focus on more complex findings. One
potential downside of AI support for less experienced
readers might stem from an uncritical acceptance of
results. For instance, they might blindly trust the AI
outcomes due to uncertainties, potentially leading to an
increase in false-positive results. In this regard, it is also
important to ensure that standard diagnostic training is
not compromised and that ethical dimensions of AI
deployment are considered.39,40 However, a previous
study has shown that physicians using a clinically
implemented AI solution in an emergency unit scenario
would be more likely not to blindly trust the results and
that the introduction of AI into routine clinical practice
has implications for perceptions and knowledge of AI
applications.41
Strengths and Limitations of the Study Design

The current study is particularly notable for its large
number of readers and cases. Three BCRs, including a
designated expert in thoracic radiology, provide a high-
quality RFS. The RFS was further subdivided according to
different sensitivities/specificities, reflecting natural
uncertainties in the interpretation of CXRs. With a
washout period of approximately 12 months and precise
reading instructions, any major influence of the woAI
reading on the wAI reading could be largely excluded.
The algorithm used stands out due its extensive training
data sourced from various centers. Biases in the detection
of pneumothoraces identified in preliminary studies could
be eliminated by further training on specially annotated
data sets.28 The prototypical algorithm used in this study
has been integrated into a commercially available
product, ready to use and offers full Picture Archiving
and Communication System integration based on a
solution available in the cloud and on-premise.

Limitations of the study include a single-center
evaluation with a pathology-enriched cohort, which does
not reflect a true real-world scenario, a limited number
of pathologies, inaccuracies arising from the statistical
approximations used in plotting Likert-scaled objects
(eg, interpolation of ROC curves, approximation of
“fitted ROC curves”), and a natural training effect that
occurred between Reading I and II that may also have
led to performance improvement. Due to the
commercial nature of the used algorithm, information
about annotations or radiologists involved in the
training cannot be disclosed. In addition, we used the
latest algorithm version that was available at the time
this study was conducted; however, newer versions of
the algorithm are now available. Consequently, future
[ 1 6 6 # 1 CHE S T J U L Y 2 0 2 4 ]



availability of this algorithm version cannot be
guaranteed.

Interpretation
Physicians, particularly less experienced ones, can
benefit from AI assistance in an emergency unit setting.
The nonradiologists were able to increase their
sensitivity and accuracy in all tested pathologies. This
has a high clinical relevance, especially when 24/7
coverage by a radiology department and/or continuous
support by experienced senior physicians cannot be
guaranteed. In this case, the number of potentially
missed findings could be reduced.
chestjournal.org
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