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PECARN prediction rule for cervical spine imaging of children 
presenting to the emergency department with blunt 
trauma: a multicentre prospective observational study
Julie C Leonard, Monica Harding, Lawrence J Cook, Jeffrey R Leonard, Kathleen M Adelgais, Fahd A Ahmad, Lorin R Browne, Rebecca K Burger, 
Pradip P Chaudhari, Daniel J Corwin, Nicolaus W Glomb, Lois K Lee, Sylvia Owusu-Ansah, Lauren C Riney, Alexander J Rogers, Daniel M Rubalcava, 
Robert E Sapien, Matthew A Szadkowski, Leah Tzimenatos, Caleb E Ward, Kenneth Yen, Nathan Kuppermann

Summary
Background Cervical spine injuries in children are uncommon but potentially devastating; however, indiscriminate 
neck imaging after trauma unnecessarily exposes children to ionising radiation. The aim of this study was to derive 
and validate a paediatric clinical prediction rule that can be incorporated into an algorithm to guide radiographic 
screening for cervical spine injury among children in the emergency department.

Methods In this prospective observational cohort study, we screened children aged 0–17 years presenting with known or 
suspected blunt trauma at 18 specialised children’s emergency departments in hospitals in the USA affiliated with the 
Pediatric Emergency Care Applied Research Network (PECARN). Injured children were eligible for enrolment into 
derivation or validation cohorts by fulfilling one of the following criteria: transported from the scene of injury to the 
emergency department by emergency medical services; evaluated by a trauma team; and undergone neck imaging for 
concern for cervical spine injury either at or before arriving at the PECARN-affiliated emergency department. Children 
presenting with solely penetrating trauma were excluded. Before viewing an enrolled child’s neck imaging results, the 
attending emergency department clinician completed a clinical examination and prospectively documented cervical 
spine injury risk factors in an electronic questionnaire. Cervical spine injuries were determined by imaging reports and 
telephone follow-up with guardians within 21–28 days of the emergency room encounter, and cervical spine injury was 
confirmed by a paediatric neurosurgeon. Factors associated with a high risk of cervical spine injury (>10%) were identified 
by bivariable Poisson regression with robust error estimates, and factors associated with non-negligible risk were 
identified by classification and regression tree (CART) analysis. Variables were combined in the cervical spine injury 
prediction rule. The primary outcome of interest was cervical spine injury within 28 days of initial trauma warranting 
inpatient observation or surgical intervention. Rule performance measures were calculated for both derivation and 
validation cohorts. A clinical care algorithm for determining which risk factors warrant radiographic screening for 
cervical spine injury after blunt trauma was applied to the study population to estimate the potential effect on reducing 
CT and x-ray use in the paediatric emergency department. This study is registered with ClinicalTrials.gov, NCT05049330.

Findings Nine emergency departments participated in the derivation cohort, and nine participated in the validation 
cohort. In total, 22 430 children presenting with known or suspected blunt trauma were enrolled (11 857 children in 
the derivation cohort; 10 573 in the validation cohort). 433 (1·9%) of the total population had confirmed cervical spine 
injuries. The following factors were associated with a high risk of cervical spine injury: altered mental status (Glasgow 
Coma Scale [GCS] score of 3–8 or unresponsive on the Alert, Verbal, Pain, Unresponsive scale [AVPU] of 
consciousness); abnormal airway, breathing, or circulation findings; and focal neurological deficits including 
paresthesia, numbness, or weakness. Of 928 in the derivation cohort presenting with at least one of these risk factors, 
118 (12·7%) had cervical spine injury (risk ratio 8·9 [95% CI 7·1–11·2]). The following factors were associated with 
non-negligible risk of cervical spine injury by CART analysis: neck pain; altered mental status (GCS score of 9–14; 
verbal or pain on the AVPU; or other signs of altered mental status); substantial head injury; substantial torso injury; 
and midline neck tenderness. The high-risk and CART-derived factors combined and applied to the validation cohort 
performed with 94·3% (95% CI 90·7–97·9) sensitivity, 60·4% (59·4–61·3) specificity, and 99·9% (99·8–100·0) 
negative predictive value. Had the algorithm been applied to all participants to guide the use of imaging, we estimated 
the number of children having CT might have decreased from 3856 (17·2%) to 1549 (6·9%) of 22 430 children without 
increasing the number of children getting plain x-rays.

Interpretation Incorporated into a clinical algorithm, the cervical spine injury prediction rule showed strong potential 
for aiding clinicians in determining which children arriving in the emergency department after blunt trauma should 
undergo radiographic neck imaging for potential cervical spine injury. Implementation of the clinical algorithm could 
decrease use of unnecessary radiographic testing in the emergency department and eliminate high-risk radiation 
exposure. Future work should validate the prediction rule and care algorithm in more general settings such as 
community emergency departments.
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Introduction
Cervical spine injuries in children are serious but 
uncommon.1–3 Emergency department clinicians often 
fear missing these injuries and opt for plain radiographs 
(x-rays) and CT scans to evaluate children presenting 
with blunt trauma.4–11 In the USA, more than 8 million 
injured children are evaluated for potential cervical spine 
injury annually, yet fewer than 1% will have cervical spine 
injuries.2,12 CT is often preferred for imaging a child with 
potential cervical spine injury due to apprehension 
regarding x-ray interpretability of the immature spine.4–8 
Unfortunately, CT is associated with substantial radiation 
exposure, and neck CT is particularly concerning due to 
well documented age-related radiation sensitivity and 
malignancy risk.13–17 The incidence of cancer within the 
first decade is 24% higher among children who had CT 
imaging than among unexposed children.14 A single 
cervical spine CT scan in childhood increases the lifetime 
risk of thyroid cancer by 78%.14

Cervical spine injury prediction rules for adults with 
trauma were developed to reduce radiographic testing 
without missing injuries. The National Emergency X-ray 
Utilization Study (NEXUS) prediction rule demonstrated 
100% sensitivity for cervical spine injury when used by 
emergency physicians.18 The Canadian C-spine Rule 
(CCR), similarly, had nearly 100% sensitivity for cervical 
spine injury when used by emergency department 
physicians on alert and stable adult patients with 

trauma.19 However, NEXUS included only 30 children 
(aged 2–17 years) with cervical spine injuries, and CCR 
excluded children altogether.2,19 Preverbal children who 
rarely experience cervical spine injuries but are 
potentially at greatest risk of inappropriate imaging are 
particularly under-represented in research to date.2,14,16,20 
A recent multicentre retrospective cohort study, 
PEDSPINE, evaluated a risk scoring system for cervical 
spine injury in children younger than 3 years, but it had 
only modest sensitivity (75·9%).21 Because of age-related 
differences in anatomy, injury patterns, and ability to 
report symptoms, prospective derivation and validation 
of a cervical spine injury prediction rule for children is 
warranted.1,22,23 Early attempts to prospectively develop 
clinical screening criteria specific to children have been 
limited by small cohort sizes and few children with 
cervical spine injuries.20

The Pediatric Emergency Care Applied Research 
Network (PECARN) has been systematically developing 
a paediatric cervical spine injury risk assessment 
tool.22,24–28 Using case–control methods, we identified 
initial risk factors for cervical spine injury.26 A pilot study 
subsequently established a multicentre, prospective, 
observational infrastructure and showed the test accuracy 
of risk factors identified in the original case–control 
study within the setting of a relatively small multicentre 
cohort.24,25 The aim of this present study was to 
prospectively derive and validate a clinical prediction rule 
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Research in context 

Evidence before this study
While we did not conduct a systematic review before this study, 
our previous work indicates that CT scans of the neck are 
overused in emergency departments during paediatric blunt 
trauma evaluation. Indiscriminate use of CT scans unnecessarily 
exposes children to ionising radiation and cancer risk. Although 
there are validated clinical prediction rules to guide the use of CT 
scans for cervical spine injury screening in adults, no such rules 
are available for paediatric emergency care. Our PECARN pilot 
work suggested that it was feasible to develop a clinically sensible 
and useful clinical prediction rule, leading to the present study.

Added value of this study 
In this multicentre prospective observational study of 
22 430 children with blunt trauma arriving at PECARN-affiliated 
children’s hospitals with dedicated trauma centres across the 
USA, we derived and validated an accurate cervical spine injury 
prediction rule, which performed with a sensitivity of 94·3% 
(95% CI 90·7–97·9), specificity of 60·4% (59·4–61·3), and 

negative predictive value of 99·9% (99·8–100·0). The rule is 
clinically sensible, relying solely on the child’s symptoms and 
results of a physical examination upon arrival in the emergency 
department. When incorporated into a clinical care algorithm, 
the cervical spine injury prediction rule showed promising 
potential for reducing unnecessary use of CT without increasing 
use of plain x-ray.

Implications of all the available evidence 
Incorporating the cervical spine injury prediction rule into 
a clinical care algorithm to guide neck imaging in children 
presenting to an emergency department with known or 
suspected blunt trauma could substantially improve the quality 
of their clinical care and reduce unnecessary radiation exposure. 
Future work is needed to validate the cervical spine injury 
prediction rule and the rule-based imaging algorithm in non-
PECARN settings, such as community emergency departments, 
and to determine the best methods for implementing this rule 
into emergency care. 
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for cervical spine injury after blunt trauma in a large and 
diverse sample of injured children and to create 
a definitive decision aid for risk stratifying children for 
neck imaging.

Methods
Study design and participants
In this prospective observational study, we screened 
children aged 0–17 years presenting at PECARN-affiliated 
children’s hospitals with dedicated emergency depart-
ments across the USA. All participating emergency 
departments are level-1 paediatric trauma centres. 
Nine sites enrolled in the derivation cohort and nine sites 
enrolled in the validation cohort. We enrolled children 
with known or suspected exposure to blunt trauma and 
who met at least one of the following criteria: evaluation 
by a trauma team; transported from the scene of injury to 
the participating hospital by emergency medical services; 
underwent cervical spine imaging at the participating 
hospital; underwent cervical spine imaging before 
transfer to the participating hospital. No exclusion was 
made on the basis of the child’s sex, race, ethnic group, 
or language skills. We excluded children with solely 
penetrating trauma (eg, gunshot or stab wound).

This study was approved by PECARN’s single 
Institutional Review Board at the University of Utah 
(Salt Lake City, UT, USA) with a waiver of informed 
consent for prospective observational data collection 
and medical record review and waiver of written 
consent for parental telephone follow-up. The study 
was registered with ClinicalTrials.gov, NCT05049330.

Procedures
Trained site research coordinators screened children for 
eligibility and enrolled patients by providing the treating 
emergency department clinician with an electronic 
questionnaire to complete. The electronic questionnaire 
confirmed study eligibility and gathered information about 
a fixed list of potential cervical spine injury risk factors that 
have high clinical plausibility and inter-rater reliability 
based on previous PECARN research.1,2,22,24–28 When 
possible, the electronic questionnaire was administered 
before viewing the results of cervical spine imaging (if 
obtained). The list of potential risk factors included 
predisposing conditions, injury mechanism, neck and 
neurological complaints, and regionalised physical 
examination findings (head, torso, and spine).25,26 Only 
substantial injuries warranting inpatient observation or 
surgical intervention were codified in these latter physical 
examination categories. The questionnaire also provided 
clinicians with examples of substantial injuries for each 
body region (eg, skull fracture; pneumothorax; signs of 
solid organ injury; thoracic, lumbar, or sacral spine 
fracture; and pelvic fracture). We also collected information 
on potential effect modifiers and confounders including 
demographics, mechanism of injury, mode of arrival, and 
predisposing conditions. To minimise the risk for missing 

data, clinicians were not able to skip questions in the 
questionnaire.

Outcomes 
The primary outcome of interest was cervical spine 
injury, defined as fractures or ligamentous injuries of the 
cervical spine, cervical intraspinal haemorrhage or 
vertebral artery injury, or cervical spinal cord injury, 
including changes in the cervical spinal cord on MRI or 
cervical spinal cord injury without radiographic 
association.

To determine the presence of cervical spine injury, the 
child’s hospital medical record was reviewed 21–28 days 
after the emergency department encounter. If available, 
neck imaging reports and surgical consultation notes 
were systematically reviewed by the lead site research 
coordinator and site principle investigator, and cervical 
spine injury was classified as being present or absent. 
A single central study adjudicator, a paediatric neuro-
surgeon, reviewed neck imaging reports and surgical 
consultation notes (if applicable) to confirm cervical 
spine injury. If there was inconsistent documentation 
regarding the presence or absence of cervical spine 
injury, the treating spine surgeon was contacted for final 
determination of injury status. If no imaging was 
obtained, guardians were contacted by telephone to 
determine whether a cervical spine injury was 
subsequently diagnosed. All research personnel who 
categorised the outcome were blinded to the clinical 
predictors codified by the emergency department 
providers in the electronic questionnaires.

Statistical analysis
The enrolled study population was divided into 
derivation and validation cohorts. We powered the 
derivation of the prediction rule to provide a narrow 
confidence bound of the point estimate of the sensitivity. 
We planned for a derivation cohort of 13 333 children, 
assuming that 240 children would have cervical spine 
injury, such that one misclassified injury would result in 
a prediction rule sensitivity of 99·6% and a one-sided CI 
with a lower bound of 97·8%.

We enrolled children from a separate group of emergency 
departments into the validation cohort over a later period. 
Enrolment into the validation cohort continued until it was 
at least two-thirds the size of the planned derivation cohort 
(ie, estimated 8889 children, of whom 160 would have 
cervical spine injuries).

Study population variables were dichotomised (ie, 
present or absent) or analysed as discrete categories and 
summarised with counts and percentages. Associations 
between candidate risk factors, modifiers, confounders, 
and confirmed cervical spine injuries were analysed by 
Pearson χ² test or Fisher’s exact test (as appropriate) and 
presented as bivariable risk ratios with 95% CIs.

The prediction rule was constructed using data from the 
derivation cohort by first evaluating the bivariable 
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association of individual variables with cervical spine 
injury and retaining those with p values of less than 
0·15 for subsequent modelling. A clinically sensible 
variable subset was individually selected to identify 
children whose risk of cervical spine injury exceeded 10%, 
a risk at which a cost-effectiveness analysis29 has shown 
that screening with CT outweighs the risk of future 
malignancy. The strength of association of these high-risk 
variables was confirmed as significant with bivariable 
Poisson regression with robust error estimates. These 
variables were then used to categorise participants to the 
high-risk cervical spine injury group; these participants 
were removed from further analysis. The remaining 
participants in the derivation cohort were evaluated by 
binary recursive partitioning using classification and 
regression tree (CART) analysis to identify non-negligible 
risk factors for cervical spine injury. Demographic variables 
and the event of loss of consciousness were excluded from 
the CART analysis in model pruning to improve 
performance. Ten-fold cross-validation was used to tune 
tree parameters for a more generalisable rule. In the CART 
analysis, we applied a misclassification cost of 250 to one 
for failure to identify a patient with cervical spine injury 
versus incorrect classification of a patient without cervical 
spine injury.

Rule performance measures and associated 95% CIs 
were calculated by applying the derived prediction rule to 
the derivation and validation cohorts. Sensitivity, the 
ability of the prediction rule to accurately identify children 
with cervical spine injuries, was calculated as the 
proportion of children with cervical spine injuries who 
presented with at least one of the rule’s risk factors. 
Specificity, the ability of the prediction rule to accurately 
identify children without cervical spine injuries, was 
calculated as the proportion of children without cervical 
spine injuries who did not have any of the rule’s risk 
factors. We also derived positive predictive value (PPV), 
the proportion of children with cervical spine injuries who 
presented with least one of the rule’s risk factors, and 
negative predictive value (NPV), the proportion of children 
who did not have cervical spine injuries and who did not 
present with any of the rule’s risk factors.

We performed a medical record review of participants 
in the derivation and validation cohorts who had been 
misclassified by the derived prediction rule. To evaluate 
the effect of potential bias in data collection and inclusion 
criteria, we evaluated the test characteristics of the 
prediction rule when applied to specific subsets of 
children. These subsets excluded children with suspected 
child abuse (for whom the time of injury and injury 
mechanism are unknown), children transferred to the 
study site from other emergency departments, children 
whose data collection occurred after cervical spine 
imaging results were known, and children aged 9–17 years 
who might have findings more like those of adults.

Using the prediction rule factors, we developed 
a clinical care algorithm for determining which children 

warrant radiographic screening for cervical spine injury 
after blunt trauma. On the basis of a previous cost-
effectiveness analysis, we constructed the imaging 
algorithm to recommend CT for children presenting with 
high-risk factors and plain x-rays  for children presenting 
with non-negligible risk factors identified in the CART 
analysis. In order to quantify the algorithm’s potential 
effect on imaging decisions, we grouped participants into 
three mutually exclusive groups: no imaging (clinically 
cleared), cervical spine x-rays obtained, and cervical spine 
CT with or without x-rays. We then calculated the imaging 
rates observed in the study population and the imaging 
rates associated with applying the algorithm to the study 

Enrolment status Cohort

Enrolled  
(n=22 430)

Missed eligible  
(n=9837)

Derivation  
(n=11 857)

Validation  
(n=10 573)

Age, years

0–8 11 633 (51·9%) 5347 (54·4%) 5982 (50·5%) 5651 (53·4%)

9–17 10 797 (48·1%) 4478 (45·5%) 5875 (49·5%) 4922 (46·6%)

Sex

Female 9362 (41·7%) 4126 (41·9%) 5002 (42·2%) 4360 (41·2%)

Male or undifferentiated 13 068 (58·3%) 5711 (58·1%) 6855 (57·8%) 6213 (58·8%)

Race

White 10 906 (48·6%) 4769 (48·5%) 6471 (54·6%) 4435 (41·9%)

Black or African American 6793 (30·3%) 2840 (28·9%) 2693 (22·7%) 4100 (38·8%)

Other 3539 (15·8%) 1627 (16·5%) 1887 (15·9%) 1652 (15·6%)

Ethnicity

Hispanic or Latino 4330 (19·3%) 2154 (21·9%) 1712 (14·4%) 2618 (24·8%)

Other 18 100 (80·7%) 7683 (78·1%) 10 145 (85·6%) 7955 (75·2%)

Mechanism of injury

Motor vehicle crash (driver or 
passenger)

6358 (28·3%) 2680 (27·2%) 3129 (26·4%) 3229 (30·5%)

Motorcycle, all-terrain vehicle, 
or motorised scooter crash, etc.

1250 (5·6%) 512 (5·2%) 662 (5·6%) 588 (5·6%)

Hit by car or other motor vehicle 
(pedestrian, cyclist, or other)

1455 (6·5%) 408 (4·1%) 667 (5·6%) 788 (7·5%)

Fall 7444 (33·2%) 3371 (34·3%) 3897 (32·9%) 3547 (33·5%)

Diving 38 (0·2%) 15 (0·2%) 25 (0·2%) 13 (0·1%)

Sports or recreation related 2219 (9·9%) 1047 (10·6%) 1348 (11·4%) 871 (8·2%)

Suspected child abuse 1327 (5·9%) 912 (9·3%) 954 (8·0%) 373 (3·5%)

Assault or altercation 535 (2·4%) 87 (0·9%) 235 (2·0%) 300 (2·8%)

Emergency medical service scene 
response

13 453 (60·0%) 537 (5·5%) 6863 (57·9%) 6590 (62·3%)

Emergency department disposition

Discharged home 14 948 (66·6%) 5717 (58·1%) 7531 (63·5%) 7417 (70·2%)

Admitted to intensive care unit 1614 (7·2%) 709 (7·2%) 1078 (9·1%) 536 (5·1%)

Admitted to hospital floor 5038 (22·5%) 2831 (28·8%) 2742 (23·1%) 2296 (21·7%)

Admitted to operating room 618 (2·8%) 277 (2·8%) 384 (3·2%) 234 (2·2%)

Death in the emergency 
department

43 (0·2%) 35 (0·4%) 23 (0·2%) 20 (0·2%)

Other 169 (0·8%) 256 (2·6%) 99 (0·8%) 70 (0·7%)

Cervical spine injury 433 (1·9%) 147 (1·5%) 274 (2·3%) 159 (1·5%)

Data are n (%). Percentages might not sum to 100 as a result of rounding.

Table 1: Participant characteristics by enrolment status and cohort
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population. We used Minitab (version 20.2) for the CART 
analysis and SAS (version 9.4) for all other analyses.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Derivation sites enrolled participants between Dec 11, 2018, 
and Oct 31, 2021, and the validation sites enrolled 

participants between July 22, 2020, and Dec 31, 2021. 
26 935 children were screened for the derivation cohort, 
16 206 (60·2%) of whom were eligible. 11 857 (73·2%) 
eligible children were enrolled (appendix p 1). 
23 320 children were screened for the validation cohort, 
16 061 (68·9%) of whom were eligible. 10 573 (65·8%) 
eligible children were enrolled. Enrolled children were 
similar to eligible patients who were not enrolled in age, 
sex, race, ethnicity, injury mechanism, and emergency 
department disposition (table 1). The prevalence of cervical 
spine injury was higher among enrolled children than 
among those who were eligible but not enrolled (1·9% 
[95% CI 1·8–2·1] vs 1·5% [1·3–1·7]).

Of the 22 430 children enrolled in both the derivation 
and validation cohorts, 11 633 (51·9%) were aged 0–8 years 
table 1). Falls and motor vehicle crashes were the most 
common injury mechanisms. Children in the validation 
cohort were less frequently admitted to the intensive care 
unit or operating room than those in the derivation cohort. 
Cervical spine injury was more common in the derivation 
cohort than in the validation cohort (274 [2·3%] of 
11 857 children vs 159 [1·5%] of 10 573 children).

51 of the 62 candidate variables met the threshold 
for consideration for the prediction rule. Bivariable 
associations with cervical spine injury are shown in the 
appendix (p 2). Notable variables not meeting this 
threshold included hanging or strangulation mechanisms, 
predisposing conditions including history of cervical 
spine injury, and suspicion of intoxication on examination. 
Age but not sex was associated with cervical spine injury.

Four high-risk factors detected among 928 children 
were selected for the prediction rule (table 2). These 
physical examination findings are easily recognised 
upon a child’s initial presentation to the emergency 
department and include Glasgow Coma Scale (GCS) 
score of 3–8 or unresponsive on the Alert, Verbal, Pain, 
Unresponsive scale (AVPU) of consciousness; abnormal 
airway, breathing, or circulation; or focal neurological 
deficits including paresthesia, numbness, or weakness. 
Participants with any one of these factors had a greater 
risk of cervical spine injury than those without any of 
these factors (118 of 928 [12·7%]; risk ratio 8·9 [95% CI 
7·1–11·2]) and were designated as high-risk factors for 
cervical spine injury.

After removing children with any of the high-risk factors 
(n=928), data from the remaining 10 929 children were 
analysed to identify variables associated with non-
negligible risk of cervical spine injury by CART. 
An additional five variables were identified as important 
for classifying those at risk for cervical spine injury: neck 
pain, altered mental status (GCS score of 9–14; verbal or 
pain on AVPU; or other signs of altered mental status), 
substantial torso injury, substantial head injury, and 
posterior midline neck tenderness (figure 1). The four high-
risk factors and the five CART-derived factors were 
combined into a nine-factor prediction rule, which in the 
validation cohort had a sensitivity of 94·3% (95% CI 

Cervical spine 
injury (n=274)

No cervical spine 
injury (n=11 583)

Risk ratio (95% CI) p value

Glasgow Coma Scale score: 3–8 72 (26·3%) 227 (2·0%) 13·8 (10·8–17·6) <0·0001

Alert, Verbal, Pain, Unresponsive 
scale: unresponsive

49 (17·9%) 139 (1·2%) 13·5 (10·3–17·8) <0·0001

Abnormal airway, breathing or 
circulation

92 (33·6%) 500 (4·3%) 9·6 (7·6–12·2) <0·0001

Focal neurological deficit on 
examination (paresthesia, 
numbness, or weakness)

35 (12·8%) 324 (2·8%) 4·7 (3·3–6·6) <0·0001

Any of the above 118 (43·1%) 810 (7·0%) 8·9 (7·1–11·2) <0·0001

Data are n (%) unless indicated otherwise. Risk ratio (95% CI) were derived from unadjusted Poisson regression with 
robust error estimates.

Table 2: Cervical spine injury risk factors and risk ratio for high-risk variables in the derivation cohort

Figure 1: Cervical spine injury classification and regression tree
Data are n/N (%). The classification tree was derived from the data extracted from participants in the derivation 
cohort who did not meet any of the high-risk findings (Glasgow Coma Scale of 3–8; unresponsive on the Alert, 
Verbal, Pain, Unresponsive scale; observed abnormal airway, breathing, or circulation findings; or observed focal 
neurological deficits on examination). Numerators in each of the nodes represent cervical spine injury. *Altered 
mental status was defined as Glasgow Coma Scale score of 9–14; verbal or pain on the Alert, Verbal, Pain, 
Unresponsive scale; or other signs of altered mental status. †Substantial injuries were those that warranted 
inpatient observation or surgical intervention.

156/10 773 (1·4%)

64/8577 (0·7%) 92/2352 (3·9%)

Self-reported neck pain?

No Yes

45/8016 (0·6%) 19/561 (3·4%)

Altered mental status?*

No Yes

34/7664 (0·4%) 11/352 (3·1%)

Substantial† torso injury?

No Yes

24/6997 (0·3%) 10/667 (1·5%)

Substantial† head injury?

No Yes

20/6909 (0·3%) 4/88 (4·5%)

Neck tenderness upon examination?

No Yes

See Online for appendix
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90·7–97·9), specificity of 60·4% (59·4–61·3), and NPV of 
99·9% (99·8–100·0; table 3).

29 children with cervical spine injuries had none of the 
final nine risk factors derived for the prediction rule 
(appendix p 5). However, upon retrospective review, 
20 (69%) of 29 children had at least one risk factor 
recorded in the emergency department medical record or 
on paired case report forms from emergency medical 
services or surgical clinicians. None of the remaining 
nine children with cervical spine injuries that were missed 
by clinician case report forms and retrospective chart 
review required surgical intervention.

In all four subanalyses completed on the combined 
derivation and validation cohorts, the prediction rule 
test characteristics were similar to the overall test 
characteristics (appendix p 7). When children with 
suspected child abuse were removed from the cohort, 
the rule sensitivity was 92·8% (95% CI 90·3–95·3) and 
NPV was 99·8% (99·7–99·8). For children not 
transferred from outside facilities, the rule had 
a sensitivity of 91·5% (95% CI 88·0–95·0) and NPV of 
99·8% (99·7–99·9). For children whose emergency 
department clinicians’ observ ations were collected 
before knowledge of cervical spine imaging results, the 
rule had a sensitivity of 93·0% (95% CI 89·8–96·2) and 
NPV of 99·9% (99·8–99·9). For children aged 0–8 years, 
the rule sensitivity was 92·7% (95% CI 89·1–96·4) and 
NPV was 99·8% (99·7–99·9). 

The cervical spine imaging algorithm based on the 
prediction rule is shown in figure 2. According to this 
algorithm, a child presenting to an emergency department 
with any of the four high-risk factors would be triaged to 
CT. A child without any of the high-risk factors but with 
any of the five non-negligible risk factors would be triaged 
to plain x-ray. Application of this imaging algorithm in 
our study population would have substantially reduced 
the use of CT and plain x-ray (table 4).

Discussion
In this large, multicentre study of children with blunt 
trauma, we derived and validated an accurate clinical 
prediction rule for cervical spine injury. With only 
nine risk factors, the rule is clinically sensible and 
parsimonious. The risk factors solely comprise the 
child’s physical complaints and examination: GCS score 
of 3–8; unresponsive on the AVPU; abnormal airway, 
breathing, or circulation; focal neurological deficit 
including paresthesia, numbness, or weakness; altered 
mental status (GCS score of 9–14; verbal or pain on the 
AVPU; or other signs of altered mental status); neck 
pain; posterior midline neck tenderness; substantial 
torso injury; and substantial head injury. These risk 
factors are easily incorporated into a clinical care 
algorithm providing risk-based recommendations for 
CT, x-ray, and clinical clearance without imaging 
(figure 2). The rule has excellent test characteristics with 
high sensitivity and NPV, and we estimated that had the 

Derivation cohort (n=11 857) Validation cohort (n=10 573)

Children with no cervical spine injury 11 583 10 414

Any factor observed 

No 6889 6287

Yes 4694 4127

Children with cervical spine injury 274 159

Any factor observed

No 20 9

Yes 254 150

Sensitivity 254/274 (92·7%; 89·6–95·8) 150/159 (94·3%; 90·7–97·9)

Specificity 6889/11 583 (59·5%; 58·6–60·4) 6287/10 414 (60·4%; 59·4–61·3)

Positive predictive value 254/4948 (5·1%; 4·5–5·7) 150/ 4277 (3·5%; 3·0–4·1)

Negative predictive value 6889/6909 (99·7%; 99·6–99·8) 6287/6296 (99·9%; 99·8–100·0)

Data are n or n/N (%; 95% CI). Risk factors were obtained from the electronic questionnaires that were completed by 
the attending emergency department clinician before viewing the results of neck imaging. In the derived prediction 
rule, the presence of a risk factor was considered to render the prediction rule positive for cervical spine injury. 
Sensitivity is the proportion of children with cervical spine injuries who had at least one of the rule’s risk factors. 
Specificity is the proportion of children without cervical spine injuries who did not have any of the rule’s risk factors. 
Positive predictive value is the proportion of children with at least one of the rule’s risk factors who have cervical spine 
injuries. Negative predictive value is the proportion of children who did not have any of the rule’s risk factors that do 
not have a cervical spine injury. 

Table 3: Clinical performance of the cervical spine injury prediction rule

Figure 2: Clinical algorithm for cervical spine imaging in children after blunt 
trauma predicated on the PECARN cervical spine injury prediction rule
Data are n/N (%). The risk of cervical spine injury was calculated from the 
combined derivation and validation cohorts using eligible children’s risk factor 
data as recorded electronically by attending emergency department clinicians. 
High-risk factors were used to determine when CT is warranted for a child 
presenting to an emergency department after blunt trauma, and CART-derived 
risk factors were used to determine when plain x-rays were warranted. 
AVPU=Alert, Verbal, Pain, Unresponsive scale of consciousness. 
CART=classification and regression tree analysis. GCS=Glasgow Coma Scale. 
PECARN=Pediatric Emergency Care Applied Research Network. *High-risk 
factors confirmed using bivariable Poisson regression with robust error 
estimates. †Altered mental status was defined as GCS score of 9–14; verbal or 
pain on AVPU; or other signs of altered mental status. ‡Substantial injuries were 
defined as those that warranted inpatient observation or surgical intervention.

High-risk factors*
• GCS score 3–8 or unresponsive on the 

AVPU scale
• Abnormal airway, breathing, or 

circulation
• Focal neurological deficits on 

examination

CART-derived risk factors
• Altered mental status†
• Self-reported neck pain or neck 

tenderness on examination
• Substantial‡ head or torso injury

No risk factors

Risk of cervical spine 
injury
187/1549 (12·1%)
Consider CT

Risk of cervical spine 
injury
217/7676 (2·8%)
Consider plain x-ray

Risk of cervical spine 
injury
29/13 205 (0·2%)
Consider clinical clearance

Yes

Yes

Yes

No

No
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rule been applied to the study population as intended, 
the number of children undergoing CT could have been 
reduced by more than 50% without missing clinically 
relevant injuries or increasing x-ray use.

This PECARN cervical spine injury prediction rule 
differs from the CCR and NEXUS criteria in several 
notable ways (appendix p 8).2,18,19 The adult-derived CCR 
relies on historical factors not included in NEXUS.18,19 
Identifying patient history factors requires reliable 
reporting from the patient or bystanders. Children often 
present to the emergency department without parents or 
other witnesses to the injury event.30,31 Young children 
might be unable to describe symptoms.23,32 PEDSPINE 
relies on age, GCS, and injury mechanism to predict 
cervical spine injury in preverbal children; however, 
patient complaints, patient history, and other physical 
examination findings were not factored into its 
modelling.21

Diving, high-risk motor vehicle crash, and predisposing 
conditions (eg, Down syndrome) were previously identified 
as risk factors for cervical spine injury in the PECARN 
retrospective case–control study.25,26 High-risk motor 
vehicle crashes and diving mechanisms are associated 
with serious injuries and useful in prehospital trauma 
triage.33 Although anatomical disorders of the cervical 
spine are uncommon in children, some might increase 
cervical spine injury risk.34,35 The previous PECARN retro-
spective case–control study included medical documen-
tation of cervical spine injury signs and symptoms, 
but attending clinician-derived documentation can be 
inaccurate and incomplete.26,36,37 For complete and accurate 
data, emergency department clinicians in this study 
completed questionnaires about their patient in real 

time.37,38 The PECARN cervical spine injury prediction rule 
relies solely on patient symptoms and physical examination 
findings, which are more precise and simple to record.

Adult cervical spine injury prediction rules include 
altered mental status; abnormal airway, breathing, or 
circulation; neurological deficits; and posterior midline 
neck tenderness as risk factors, but they differ from the 
PECARN Cervical Spine Injury Prediction Rule in how 
they incorporate neck pain, neck mobility, and con-
comitant injuries (appendix p 8). Musculoskeletal neck 
pain is uncommon in children but becomes more 
prevalent with age and affects nearly 10% of the global 
population by the seventh decade of life.39 Rather than neck 
pain alone, the timing of neck pain onset and neck range 
of motion are probably more specific for cervical spine 
injury in adults. Restricted range of motion of the neck 
was identified as a risk factor in the PECARN retrospective 
case–control study. Yet, the subsequent prospective pilot 
study demonstrated that neck range of motion was 
frequently not assessed by emergency department 
clinicians if a prehospital cervical collar was placed.25

Substantial head and torso injuries are risk factors in 
the PECARN cervical spine injury rule. By contrast, the 
CCR does not include concomitant injuries, and NEXUS 
includes all painful, distracting injuries. After the NEXUS 
criteria were published, several studies challenged the 
use of painful distracting injuries as non-specific and 
resulting in increased x-ray use. Torso injuries were 
identified in several studies as the only important 
concomitant injuries.40–43 Substantial head injuries might 
be an important and reliable proxy for axial load impact in 
children. Results of the PECARN retrospective case–
control and pilot prospective observational studies 
showed axial load biomechanics and diving mechanisms 
as significant risk factors.25,26

PECARN is a robust environment for researching 
injured children; however, the findings might not be 
generalisable to community emergency departments 
that serve different patient populations and are staffed by 
clinicians with varying paediatric expertise. To enhance 
representation, we included children transferred from 
community emergency departments. However, we might 
have introduced spectrum and reporting biases by 
including transferred children, many of whom had 
already received cervical spine imaging and had injuries 
warranting transfer to a paediatric trauma centre. We 
tried to limit reporting bias by obtaining emergency 
department clinicians’ observations before their 
knowledge of cervical spine imaging results, but this was 
not always possible. We might have also introduced bias 
by including children with suspected child abuse, in 
whom the mechanism and time of injury are unclear. To 
address these potential biases, we demonstrated that the 
PECARN cervical spine injury prediction rule performed 
similarly when each subpopulation was excluded.

The proposed imaging algorithm holds promise for 
enhancing the screening process for cervical spine 

Overall 
(n=22 430)

Derivation cohort 
(n=11 857)

Validation cohort 
(n=10 573)

Observed imaging rates

Clinically cleared 
(no imaging)

9662 (43·1%) 4682 (39·5%) 4980 (47·1%)

Plain x-ray 8912 (39·7%) 4639 (39·1%) 4273 (40·4%)

CT 3856 (17·2%) 2536 (21·4%) 1320 (12·5%)

Imaging rates with clinical prediction rule applied

Clinically cleared 
(no imaging)

13 205 (58·9%) 6909 (58·3%) 6296 (59·5%)

Plain x-ray 7676 (34·2%) 4020 (33·9%) 3656 (34·6%)

CT 1549 (6·9%) 928 (7·8%) 621 (5·9%)

Data are n (%). Participants were grouped into three mutually exclusive 
categories: those who received no imaging (clinically cleared), those who received 
cervical spine plain x-rays only, and those who receive cervical spine CT with or 
without plain x-rays. Projected imaging categories were determined by applying 
the PECARN cervical spine injury prediction rule imaging algorithm (figure 3) to 
the study population. PECARN=Pediatric Emergency Care Applied Research 
Network.

Table 4: Actual imaging use in children presenting to an emergency 
department with known or suspected blunt injury versus projected use 
when applying the PECARN cervical spine injury prediction rule imaging 
algorithm
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injury in children, but there are crucial considerations 
to bear in mind regarding its implementation. We 
devised the emergency department cervical spine injury 
screening algorithm to assist in selecting imaging 
based on pre-test probability. In cases where the pre-
test probability for cervical spine injury is high, children 
might need additional MRI to clarify their injury status. 
However, determining which children require MRI as 
an adjunct was beyond the scope of this study.

In summary, in this large, prospective multicentre 
study we derived and validated an accurate clinical 
prediction rule for cervical spine injury in children 
presenting with blunt trauma. These clinically sensible 
criteria have high sensitivity and near-perfect NPV 
without missing any cervical spine injuries requiring 
surgical intervention. When incorporated into a risk-
stratified imaging algorithm, the rule can potentially 
spare children exposure to medical radiation by 
reducing CT use. Future work is needed to determine 
the best methods for implementing this prediction rule 
into clinical care, particularly in community emergency 
department settings.
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