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INTRODUCTION
The terms artificial intelligence (AI) and machine

learning are often used interchangeably, but machine
learning is just one type of AI (Figure 1). AI pertains to
computers performing intelligent, human-like tasks,1

whereas machine learning, more specifically, has to do with
“programming computers to learn from experience.”2 From
its inception, computing has generally applied
preformulated rules to inputs or data, but machine learning
models make predictions by tuning their internal
parameters to the data, in a sense creating their own rules.
Deep learning models are, in turn, a subtype of machine
learning models that are structured in multilayered
networks of parameters (see also the Glossary [Appendix
E1, available at http://www.annemergmed.com]), whereas
large language models3-8 such as Generative Pretrained
Transformer (GPT),9 Google Bard,10 and Bidirectional
Encoder Representations from Transformers (BERT)4 are a
subtype of deep learning models that have a very large
number of parameters and generate responses to verbal
prompts by processing them as a whole.11-13

Because of the rapid progress in the area of machine
learning, the result of AI on our working lives in the
emergency department (ED) is likely to increase in the near
future, and the technology promises to transform both
emergency medicine and medicine more broadly. The
changes will likely occur in 3 stages: Map, Measure, and
Manage (Figure 2). This article discusses the development
of AI in emergency medicine in terms of these overlapping
2 : August 2024
yet differing stages. At each stage, it describes important,
related ideas, such as key properties of the models, and
recognizes barriers to their development and implementation.

MAPPING STAGE
The first stage involves identifying pertinent clinical

problems and exploring AI methods for solving them. The
medical field, as a whole, has clearly progressed at least this
far. Computer programs, often rule-based, have served as
“clinical decision support systems” in the ED for years,
providing preliminary ECG readings, voice recognition for
dictation, and checks for drug interactions and allergies. In
the near term, machine learning-based AI algorithms will
surely contribute more to this kind of decision support by,
for example, helping emergency medicine clinicians
interpret radiology studies when the radiologists are not
available.14-18 In certain reading tasks, the accuracy of AI
systems is already close to that of radiologists.15,19-24 At
some institutions, AI algorithms are currently being used
for prioritizing abnormal studies.25,26 For example, the
ICH tool (Aidoc) helps rapidly detect intracranial
hemorrhage.27

Diagnosis and Management Using AI Models
AI systems will no doubt help clinicians with many

kinds of diagnoses, as well as the prediction of clinical
outcomes. Multiple AI products have already been
approved for assisting with the diagnosis and management
of acute ischemic stroke. They appear to have fair
sensitivity and good specificity for large vessel occlusion28

and reportedly help reduce the time to mechanical
Annals of Emergency Medicine 139

mailto:robertjpetrella@yahoo.com
http://annemergmed.com/content/podcast
http://www.annemergmed.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.annemergmed.2024.01.031
http://www.annemergmed.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annemergmed.2024.01.031&domain=pdf


Figure 1. A general schema for artificial intelligence programs. Programs can roughly be divided into rule-based algorithms, which
calculate or predict based on hard-coded rules, and machine learning, which are “trained” based on data sets. Rule-based
programs comprised most of computing until fairly recently. Many fields, including those that traditionally used “hard-coded”
programs such as robotics, computational chemistry, and mathematics, now incorporate elements of both rule-based computation
and machine learning. Neural networks, of which there are several subtypes, are themselves a type of machine learning, of which
there are also many subtypes. Feed-forward neural networks process data unidirectionally from input to output, ie, without any
backward flow or loops, whereas recurrent neural networks include such loops. The lists of categories and subtypes shown here are
representative, not exhaustive. GPT, Generative Pretrained Transformer, LSTM, long short-term memory (model).
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thrombectomy.29 In addition, EDs have started
incorporating more radiology-related AI technology into
their practices. For example, Critical Care Suite (GE
Healthcare) and HealthPNX (Nanox) look for
pneumothorax on chest radiographs. Many other
diagnostic or predictive models have also been
developed, some of which are listed in the Table. For
example, machine learning algorithms have shown
promise in identifying which patients with febrile
neutropenia will develop multidrug-resistant infections30

or which patients are likely to develop sepsis.31-33 A
number of machine learning sepsis predictors have been
implemented in US EDs, including Sepsis Watch34 and
the Epic Sepsis Prediction Model35 (but see below). A
good deal of machine learning research has been done on
ED triage.36-46 At least one triage algorithm is being used
in EDs as of this writing,47 although validation studies
are pending.

In addition, AI models are being built to make case-
specific treatment recommendations, eg, antibiotic
suggestions based on the clinical scenario, patient-specific
factors, and local antibiograms.48-51
140 Annals of Emergency Medicine
Types of AI Assistance in Clinical Decisionmaking
The choice of model for solving a particular clinical

problem is important. There are at least 2 fundamentally
different ways that AI programs can help clinicians make
decisions: (1) solve a clinical problem with a “black box”
model52—ie, in which data pertaining to the clinical
scenario are put in, and the recommended decision is
generated, without any accompanying description of the
underlying rationale; or (2) help clinicians formulate better
clinical decision rules, prediction rules53 or clinical practice
guidelines.

Model interpretability. The latter is a decades-old
idea54-56 that has never come to fruition, but modern AI
may help.57 Clinical decision rules are based on clinical
patterns, and although human beings and deep learning
models are both good at pattern recognition, computers
can be trained on enormous amounts of data that would
not be feasible for humans to sift through. However,
obtaining fundamental insights from machine learning
programs can be difficult because it requires model
interpretability.58 This is the capacity of a model to reveal
relationships between the features in clinical data—ie, the
Volume 84, no. 2 : August 2024



Figure 2. The 3 stages of medical AI development. This
framework reflects that put forward in 2023 by The National
Institute for Standards and Technology160 for risk management
in AI development. It is used here in a broader context. Each
stage is associated with developmental goals and barriers. AI,
artificial intelligence.
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input variables—and the clinical decisions that produce the
best results and to do it in a way that humans can
understand.

Some machine learning models have intrinsic
explainability, meaning explanatory metadata naturally falls
out of them. Examples are logistic regression,59 simple
decision-tree algorithms,60-62 and some Bayesian models.63

So-called explainable AI has grown to be an active area of
research over the last few years.64-67 For harder problems,
larger, more flexible models tend to be more accurate but
more complex and “opaque” or less easily interpretable.68

Deep learning models, such as convolutional neural
networks69 and large language models,3-10 are very
powerful,70 but they tend to be opaque71—ie, they
function as black boxes. In rough terms, deep learning
models’ predictions are akin to what has been called System
1 thinking in humans—quick, approximate, and
unexplained.72,73 Rationales have to be drawn from these
models externally, or post hoc, after they are trained,
Volume 84, no. 2 : August 2024
normally with the help of some analysis tools (eg, see
McKenzie et al,74 2022). Extracting a buried clinical
decision rule from a deep learning model post hoc is,
therefore, very difficult, and some data scientists believe it
will become infeasible as the models grow larger and more
complicated.75

Relation to background knowledge. Because they are
reductions of complex systems, human-comprehensible
clinical decision rules derived from machine learning
models—like any clinical decision rule—are approximate
and, in a sense, “contrived.” They cannot possibly reflect all
the relationships present in the model,75 just as commonly
used clinical decision rules like the History,
Electrocardiogram, Age, Risk factors, and Troponin
(HEART) score76 do not capture all the complexity of
clinical scenarios. Some argue that what matters most in
machine learning is a correct prediction, not an
approximate underlying rationale.77,78

However, medical providers and patients want to
understand the thinking that underpins medical
decisions,79 especially for problems that have not been well
studied or situations where critical decisions are at stake,
like risk stratification in serious illness, treatments with
significant side effects, or distribution of scarce resources.80

For example, a higher age raises the HEART score, and that
corresponds well to our knowledge of coronary disease, but
if, instead, it lowered the score, we would want to
understand why and might suspect the model is wrong. An
AI model using its own internally generated version of the
HEART score rule without an accompanying explanation
would not allow us to check the rule against our
background knowledge in that way. From this perspective,
the capacity to be explained or interpreted will be essential
to the usefulness of clinical decisionmaking models in
emergency medicine.

Researchers in Seoul used opaque machine learning
methods to predict one minute in advance whether a child
might become hypoxic while under general anesthesia
during a surgical procedure.81 The inputs—ie, the features
the models used—were a few demographic and physiologic
parameters, such as age and end-tidal CO2. The models
made accurate predictions, but they did not identify any
risk factors for hypoxia. That would have been useful but
would have required more computation, eg, rerunning the
model predictions many times, leaving out some of the
features each time (eg, age or fraction of inspired oxygen),
and checking how those changes affected the model’s
accuracy.82,83

In that study, the model used about 10 features, so the
authors could conceivably have done that kind of thorough
analysis. However, some deep learning models use hundreds
Annals of Emergency Medicine 141



Table. Studies of some emergency department–related clinical artificial intelligence models.

Study Objective Authors, References Year Type of Model Validation

Diagnosis of pulmonary embolism by ECG Valente Silva et al212 2023 Deep learning Internal

Identifying appendicitis in undifferentiated
abdominal pain

Su et al213 2022 Logistic regression, random

forest

Internal

Risk stratification for

TBI Molaei et al214 2016 Random forest Internal

Pediatric appendicitis Reismann et al215 2019 Logistic regression Internal

CHF Sax et al216 2021 Various machine learning Internal

Pulmonary embolism Villacorta et al217 2021 Logistic regression Internal

Chest pain Liu et al218 2021 Various machine learning

(dimensionality reduction)

Internal

Predicting

Unscheduled 72-hour returns in patients

with abdominal pain

Hsu et al219 2021 Various machine learning Internal

Positive urine cultures Taylor et al220 2018 Various machine learning Internal

Need for admission in pediatric asthma Patel et al38 2018 Various machine learning Internal

multi-drug-resistant infections in febrile

neutropenia

Garcia-Vidal et al30 2021 Various machine learning Internal

Sepsis Nemati et al31 2018 Artificial

Intelligence Sepsis Expert*

Internal and

external

Delahanty et al32 2019 Gradient boosting Internal

Lin et al22 2021 Gradient boosting Internal and

external

Zhang et al33 2021 LSTM (RNN) Internal

Clinical deterioration Choi et al221 2023 Gradient boosting Internal and

external

Adverse events in hyperglycemia Hsu et al222 2023 Various machine learning Internal

Frequent use of the ED Chiu et al223 2023 Various machine learning Internal

Risk of ED visits in older adults Park et al224 2023 Various machine learning Internal and

external

In out-of-hospital patients

Short-term mortality, need for ICU Spangler et al225 2019 Gradient boosting Internal

Cardiac arrest Blomberg et al226 2019 Not specified Internal

In patients with trauma

Acute coagulopathy Li et al227 2020 Random forest, logistic

regression

Internal,

prospective

Need for massive transfusion Lammers et al228 2022 Various machine learning Internal

ED volume Jilani et al229 2019 FFNN, ARIMA, fuzzy time series Internal

ED patient flow Pak et al230 2021 Random forest and various

linear regression models

Internal

ED triage

Estimating ESI score in

abdominal pain

Farahmand et al36 2017 Various machine learning Internal,

prospective

Predicting:

Hospital admission Hong et al37 2018 Logistic regression, deep

learning, gradient boosting

Internal

Disposition Raita et al39 2019 Various machine learning Internal

Chen et al43 2020 Deep learning model Internal

The AI Future of Emergency Medicine Petrella
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Table. Continued.

Study Objective Authors, References Year Type of Model Validation

ESI levels Ivanov et al44 2021 Gradient boosting (Not

specified)

Internal

Hospitalization Lee et al45 2021 Deep learning Internal

Screening for septic shock Kim et al40 2020 Various machine learning Internal

Identifying critical illness Joseph et al42 2020 Deep learning Internal

Identifying patients with low-severity Chang et al46 2022 Various machine learning Internal and

external

Study objective—the clinical goal of the model; Authors, References—authors of the study and study citation; Year—the year of study publication; Type of model—the type of AI
model used in the study; Validation—how the model was validated. “Internal” means the data set collected was used for both training and validation, usually by partitioning it into
separate sections. “External”means the model was also validated with other, unrelated data (from sources external to the training data institution). “Prospective” indicates testing
was done on new data from the same institution.
ARIMA, autoregressive moving average integrated model; CHF, congestive heart failure; ED, emergency department; ESI, emergency severity index; FFNN, feed-forward neural
network; ICU, intensive care unit; LSTM, long short-term memory (model); RNN, recurrent neural network; TBI, traumatic brain injury.
*Based on a Weibull-COX proportional hazard model.
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or thousands of distinct features. Large language models,
which have been used to try to predict the ED disposition
based on triage notes3 and to triage patients based on
history of present illness alone,84,85 rate words on several
hundred4,5 to thousands86,87 of characteristics or
dimensions, which is what they use as features of
language. Boiling down a black box model with that many
features to show which ones, and which interactions
between them, are important in a given problem remains a
daunting analytical challenge.

The emerging role of large language models. Because
the more advanced large language models such as GPT-4
often articulate rationales along with their answers to
queries, it is hoped that they may eventually circumvent the
interpretability problem through self-explanation.88,89 This
is an area of active research,67,90-92 but so far, the results
have been mixed, as large language model-generated
explanations are often implausible or inconsistent across
related questions.91,92

It also points to a third way that AI could help clinicians
make decisions: by summarizing and presenting the
pertinent data that has already been established regarding a
given clinical question,93 possibly with an accompanying
differential diagnosis94,95 or list of treatment options.96,97

This idea is far from being fully realized in publicly
available large language models, however. A recent study by
Berg et al98 indicated that although Chat-GPT was fairly
proficient at generating preliminary differential diagnoses in
straightforward ED cases, it could be inconsistent in its
answers. Moreover, although large language models show
promise in their ability to answer medical questions,99-102

they often “hallucinate” incorrect information103-105 or
otherwise fail to answer correctly106-108 or give proper
medical advice.109 A 2023 Stanford study110 found that
Volume 84, no. 2 : August 2024
although the responses provided by GPT-3.5 and -4 on
clinical questions were, for the most part, unharmful, they
correlated poorly with answers provided by an in-house
informatics consultation service.111 The development and
use of large language models is currently in its infancy—as
of May 2023, there were only 9 published articles relevant
to emergency medicine112—but it will, no doubt, surge in
the coming years.
MEASUREMENT STAGE
As described in the prior section, considerable research

has been done in exploring and developing medical AI
applications. However, these models need to be clinically
validated to be of most use in real patient care settings.
Many models perform better on internal tests—ie, on data
related to their training data sets—than they do in real-
world applications. An example is the underperformance
in a 2021 study of the widely implemented Epic Sepsis
Prediction Model.113 As alluded to above, most clinical AI
models have only been validated internally. In 2021, one
review found more than 19,000 clinically related AI
studies but only 41 randomized controlled trials,114 and
Yin et al115 found only 51 studies in which AI made
decisions in real-life clinical settings. This so-called “AI
chasm”

116,117 argues that the medical field, on average,
currently stands near the beginning of the Measurement
stage.

During the coronavirus disease 2019 (COVID-19)
pandemic, machine learning methods were used to rapidly
identify the Janus kinase inhibitor baricitinib as a potential
anti-SARS-CoV-2 drug,118 and the drug’s effectiveness was
validated in subsequent experimental119 and clinical120-122

studies. To realize AI’s potential, emergency medicine will
Annals of Emergency Medicine 143
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need much more of that kind of validation of the basic
research and clinical hypotheses generated by machine
learning programs.
Data Set Quality
An array of barriers confronts the validation of clinical

AI. A number of them involve patient data: (1) Data
fragmentation. Many patients’ medical information is
scattered across a number of hospital systems. (2) Data
locality. Algorithms trained on data from one hospital
system or geographic area may not be applicable in
another system or area.123 (3) Data representation. Fewer
data exist for certain populations, eg, pediatric patients.124

(4) Data errors and ambiguities. For example, not all
radiology readings (done by humans or otherwise) are
correct,125 and models trained on them inherit the
errors.126

There are also technical issues with databases. For
instance, clinical data exists in many different formats, and
the reading/analysis software has to handle them all.127,128

In addition, data sets are often biased. Current genetic
databases, for example, contain data mainly from patients
of European descent.129 Machine learning algorithms are
particularly vulnerable to misrepresentation bias because
they will use whatever data features they are allowed to. For
example, a COVID-19 prediction model based on
radiographic studies failed because it was trained partly on
ICU cases, so it learned that patients who were lying down
were more acutely ill,130 which is, of course, true but
unhelpful.

Another difficulty lies in the nature of clinical diagnosis
itself. Details like the general impression (eg, the patient
“looks terrible”) are often crucial to proper ED
management, but medical providers often do not record
them in the electronic medical record for capture in patient
data sets. Conceivably, we could video record all patients at
presentations to teach our computers to encode general
impressions, but this, of course, raises patient privacy
issues. Video recording or photography of ED patients,
usually for educational or documentation purposes, is
sometimes done,131 as is video monitoring of
inpatients,132,133 but images and recordings are currently
subject to Health Insurance Portability and Accountability
Act (HIPAA) restrictions and generally require patient
authorization for use in research.134

Privacy
More generally, whose data will be made accessible to

researchers? If not everyone’s, then should access be made
voluntary? That may introduce self-selection biases.
144 Annals of Emergency Medicine
Moreover, offering citizens financial incentives for their
data raises both ethical and political concerns.

Many institutions and hospital systems already have
their own patient data warehouses.135-137 Moreover, there
are large patient data networks, like the Patient-Centered
Outcomes Research Network (PCORnet)138 and the
Accrual to Clinical Trials (ACT) Network,139 which is
National Institutes of Health-funded, that contain data on
tens of millions of Americans. These data systems make
inroads toward solving the problems of locality because
they cover large areas and fragmentation because they
aggregate data, but they have varying levels of patient
privacy140 and security.

The United States has traditionally had a more laissez-
faire approach to corporate use of personal data than
Europe,141,142 although large data security breaches and the
rise of AI seem to be spurring changes. Data privacy in the
United States is covered under HIPAA, the Federal
Information Security Management Act, the Gramm-Leach-
Bliley Act, and several other laws. There are also various
disconnected laws at the state level.143 Four states
(California, Connecticut, Colorado, and Virginia) did pass
general data privacy laws in 2022-2023 that contain
provisions governing automated decisionmaking,144,145 a
regulatory term that includes AI algorithms.

The great research benefits of feeding large swaths of
clinical data into machine learning models may ultimately
overwhelm people’s privacy concerns and motivate
solutions to other problems. Organizations have already
developed methods for “anonymizing” patients’ personal
data,146 and the reading abilities of large language models
may circumvent the problems posed by differing patient
data formats.147
Regulatory
Despite the United States Food and Drug

Administration’s (FDA’s) long-time involvement with
computer-related medical devices,148-150 the overall
regulatory regime for AI products is still in its formative
stages, with regulators scrambling to keep pace with
rapid changes in the field. In 2017, the FDA launched a
precertification program meant to streamline the approval
of digital health applications (called Software As a
Medical Device), such as mobile phone-based symptom
checkers, but the program failed because of the speed of
innovation in this area.151 Smartphone apps are
becoming increasingly popular with consumers and
prescribed by clinicians. They obviously pose risks if they
give faulty results or advice, which is why early AI-
related symptom checkers tended to be risk-averse.61 A
Volume 84, no. 2 : August 2024
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2022 study suggested that the apps have become more
specific but less sensitive, and their overall accuracy
remains similar to that of laypersons.152 Some studies
have suggested improved outcomes with these apps,153-156

and although they are not yet commonly prescribed from
the ED, that is likely to change.

The Federal Trade Commission and The National
Institute for Standards and Technology (NIST) have laid
down some ground rules for commercial AI products,
including ones ensuring that the results of AI algorithms are
explainable to consumers,157,158 but as of this writing, both
bodies are still formulating their reliability, accuracy, and
safety guidelines/regulations159,160 and NIST’s AI Risk
Management Framework is nonbinding.161,162
MANAGEMENT STAGE
Once AI-related medical tools have been developed and

validated, they need to be implemented or deployed, ie,
integrated into daily clinical workflows and managed. If
and when this is achieved for enough applications, it is
conceivable that AI will drive, or at least guide, the entire
clinical process.163 Clinicians may eventually come to rely
on AI algorithms,164 even if they have become so internally
complex as to make the rationales for their
recommendations practically impossible to decipher.

No one really knows what medical diagnosis and
treatment will look like in this management stage of
medical AI development, but medicine in general will
likely be more preventative, detecting more conditions
before they are clinically apparent.165,166 Still, there will
no doubt be accidents and injuries, as well as unexpected
infections, thromboembolic events, and inflammatory
conditions, so emergency medicine services will likely
continue to fill a need. One can reasonably surmise
emergency medicine will involve more embodied AI,
including robotics,167 computer vision, natural language
processing, and speech recognition—ie, computers
interacting with their environment, as in embodied
conversational agents.168

However, as described below, there are many obstacles
to the successful deployment of AI systems in medical
settings, including medicolegal, regulatory, technical, and
social/philosophical ones.
Medicolegal
If an AI’s reading of a radiograph is in error and causes a

bad clinical outcome, is the software developer liable? The
treating clinician? The hospital that purchased the software?
If not, then who is? Incorrect suggestions by AI systems can
degrade the quality of clinical decisions.169 Although the
Volume 84, no. 2 : August 2024
FDA issued its first approval of a software-enabled medical
device in 1995,148 the case law in this area has not yet been
well developed.170 In related areas, the “learned
intermediary” doctrine171 has generally held that
manufacturers and pharmaceutical companies relieve
themselves of liability by disclosing to the physician the
risks of the device or drug. By this principle, software
developers would not be liable for incorrect diagnoses or
recommendations made by an AI that led to poor
outcomes, provided the risks were disclosed beforehand.
Courts have been reluctant to subject software developers
to product liability law, especially in health care.170,172 As
pointed out by Price et al,173 because current tort law
rewards following the standard of care, liability concerns
encourage physicians to avoid using AI to make patient-
specific decisions that might deviate from a broader
standard, thereby negating the potential advantages of AI-
enabled personalization of care. Some advocate for more AI
developer liability, arguing that sophisticated AI systems
possessing some level of autonomous thinking and giving
medical advice should be held to a higher legal standard
than, say, a heart valve.174,175
Technical/Logistical
The compressed time frames in emergency medicine

place special demands on AI diagnostics and treatment
recommendations. For example, a tension pneumothorax is
a clinical diagnosis made rapidly by history and physical
examination because there’s often no time for anything
else. Timely AI diagnosis and advice in cases like this would
require sensors (eg, biomechanical,176 electrochemical,177

and ultrasonographic178) to gather and process the initial
data within the first minute or two. Other examples of
situations requiring AI timeliness in the ED would include
deciding whether or not to treat with thrombolytics,
intubate a patient, perform an emergency cricothyrotomy,
administer uncross-matched blood, or transfer a
hypotensive patient to the radiology suite. Further, ED
time constraints make accuracy a necessity in AI
recommendations, as emergency medicine clinicians would
need to trust them on the spot. This distinguishes the
implementation of AI-based clinical decision support
systems in the ED from that in, say, oncology, where
virtual tumor boards have the time to meet and discuss the
validity of AI recommendations for individual patients.97
Model Drift
Even if a machine learning model is very accurate when it

is first deployed, its performance will often deteriorate over
time because of changes in real-world data—eg, patient
Annals of Emergency Medicine 145
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demographics or disease pathology—relative to its training
data179 or changes in the data’s context of use.180 In an
example of this “AI aging”181 phenomenon, machine learning
models developed before the COVID-19 pandemic to predict
admissions from the ED182 or trigger sepsis alerts183 saw a
large increase in false positives during the pandemic. Thus,
many models need periodic updating or validation. However,
because they are usually proprietary commercial products
(refer to FDA list150 and Alaskar et al184), EDs and hospitals
have limited control over them. Open-source
development117,185 might allow institutions to update models
more frequently as well as train them on local data. In
addition, models that are more adaptable to, or tolerant of,
data set shifts are in development.180,186-188
Reasoning Ability
A key determinant of how far AI can advance as a

medical research and clinical decision-making tool will be
how well it can reason. Much of medical decision making
involves common sense, a form of reasoning. A patient with
bilateral upper extremity injuries will likely be incapable of
using crutches (eg, for his/her sprained ankle), and an AI
engine should be able to recognize that, despite the paucity
of published clinical trials on the question. Formulating
sensible mechanisms of disease involves multiple forms of
reasoning, as does interpreting opaque machine learning
models.

Although deep learning models are based on
something like System 1 abilities—a knack for
recognizing patterns that is critical for hypothesis
generation189—reasoning in AI algorithms would be
more akin to System 2 thinking in humans, which is
analytic. Scientific inquiry,190,191 diagnosis,192 and
theory building193,194 require both intuition and analysis
acting in concert.

As of this writing, publicly available deep learning AI
models can do some reasoning—GPT-4 apparently scored
in the 88th percentile on the Law School Admission
Test195—but it is currently limited and error-
prone,196,197 especially in areas like common sense.198

These models currently mimic the reasoning process by
recognizing the statistical features of a particular problem
and constructing answers from that rather than using
transferable, explicit rules of logic.199 Because the
construction of accurate, cogent, and human-
comprehensible explanations of a model’s results involves
reasoning, advances in this area will likely have a direct
bearing on the ability of large language models to self-
explain, which in turn could increase their utility in the
ED and other areas of medicine.
146 Annals of Emergency Medicine
Whether “Black Box” Will Ultimately Be Enough
Some believe that the current “intuitive” capabilities of

AI, if taken to the extreme, will eliminate the need to
design System 2-like analytical abilities into the models.
They point to the Universal Approximation
Theorem,200,201 which says that a neural network if it is
large enough, can approximate any function to any
arbitrary degree of accuracy. In principle, this means that
if one had enough relevant data, a large enough model,
and enough time and computational resources, one could
arrive at a sufficient answer to just about any clinical
question. So, if deep learning algorithms could predict the
optimal course of action in every possible clinical
situation, would it matter that the programs didn’t really
“understand”—in the sense of being able to articulate
reliable rationales—how they arrived at their decisions?

As of now, patients and clinicians would clearly reject
the notion of machines making all the life-and-death
treatment decisions without any human involvement. The
more critical the decisions and the more serious the
conditions for which we are using AI, the more important
interpretability would seem to be. However, one supposes
that with enough time, familiarity, and technical
advancement, humans would someday learn to trust AI
recommendations164 even if we did not understand them
or could not verify accompanying explanations, as odd as
that may now seem.

In that event, the opacity of the models would make it
more challenging for clinicians to stay in the
decisionmaking loop. An AI’s estimate of patients with
trauma chances of survival as 78% with a chest tube and
33% without it would likely be very accurate because it
would be tailored to that specific clinical scenario and
patient. However, if the clinician expected the opposite
advice, the absence of a verified explanation would likely
prove confusing.
Who and What Will Drive
Presumably, in such a future world, patients would still

make the decisions, supported by professional advice and
discussion, but would be very heavily influenced by AI
recommendations. The American Medical Association prefers
the term augmented intelligence over artificial intelligence to
stress that computers are assisting human beings rather than
replacing us.202 But if AI engines are better at a certain task
than clinicians are, there will probably be a tradeoff between
our level of involvement and the medical system’s overall
performance on that task. This is a general AI problem. If self-
driving automobile technology advances to the point where an
integrated network of self-driving cars dramatically reduces the
Volume 84, no. 2 : August 2024
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number of car accidents,203,204 human driving may be
restricted205 (see Summary Table).

Summary Table. A few take-home points from this discussion.

Key Ideas
� Artificial intelligence (AI) has the potential to transform many

aspects of emergency medicine, from diagnosis and treatment of

conditions to management of patient flow.

� Although many AI algorithms have been developed and internally

tested, there has been a paucity of clinical validation to date.

� The most powerful AI methods, such as deep learning models, tend

to be “opaque,” so the best answers AI can give us may not be

accompanied by verified explanations.

� Large language models, such as the GPT series, promise to be

highly useful in emergency medicine, but their development is

still in its early stages, and they are currently error-prone.

� Many important questions surrounding medical AI have not yet

been answered, such as who is liable for errors caused by AI

systems and how the technology will be regulated.

� When medical AI applications have become sufficiently advanced,

there will likely be a tradeoff between the level of clinician

involvement and the efficiency of the medical system, at least with

regard to certain tasks.
GPT, Generative Pretrained Transformer.

Efficiencies created by AI systems could have a material
result on ED and other hospital staffing needs within
the next decade or two. A Goldman Sachs analysis
estimated that 28% of tasks in health care are exposed to
AI automation.206 McKinsey & Co estimate that about a
third of medical provider tasks are automatable207 and
that, by 2030, AI systems could free up about 12% of
physicians’ and surgeons’ hours and 8% of nurse
practitioners’ hours.208

Still, it is likely that clinicians will retain a role in
decisionmaking long after that. The application of clinical
evidence to a particular case usually involves some degree of
expert opinion to handle factors that lie outside of the
prescribed guidelines. Even with advanced AI generating
the recommendations, that will likely remain the case.
Some variables probably will not be reflected in training
databases, such as an individual patient’s feelings and
preferences, as well as practical, idiosyncratic, or situational
factors. For instance, the patient may be on a novel or
experimental medication that makes the recommended
treatment unnecessary or contraindicated. Sometimes,
patients refuse chest tube placements, even if they may
prove crucial to their care and outcome, because they
involve an invasive procedure that can be painful.

As to scientific advancement, if more powerful
machine learning methods make the prediction problem
Volume 84, no. 2 : August 2024
easier to solve than the insight problem, in the future,
basic medical understanding may lag clinical
decisionmaking. That is not to say that we now
thoroughly understand everything we do in clinical
medicine—we do not. For example, we commonly use
many drugs, including lithium,209 acetaminophen,210

and levetiracetam,211 for which the mechanism of action
is poorly understood. However, for the most part, theory
and concepts drive science. Our findings in the clinic
and the laboratory either validate or disprove not only
the study hypothesis but also the underlying theory. In
the future of machine learning, one might anticipate
there will be a paradigm shift, in which the latter part of
that will be missing. Scientific knowledge will no doubt
run much deeper than it does today, and the new,
effective treatments produced for patients will still be
good for them, but those advances may be sparked by
pattern matching that is not initially understood.

In conclusion, AI systems and machine learning
models, in particular, have made great strides in their
predictive abilities and demonstrated enormous potential
as research and clinical tools. AI algorithms being
developed to make diagnostic, prognostic, or therapeutic
predictions in the ED or other clinical settings need to be
validated in those settings before they can be helpfully
integrated into daily workflows. This process, currently in
its early stages, faces many technical, legal, logistical,
social, and regulatory hurdles but promises to be
transformative.
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