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Abstract
Background: Vital signs are a critical component of the prehospital assessment. Prior 
work has suggested that vital signs may vary in their distribution by age. These dif-
ferences in vital signs may have implications on in-hospital outcomes or be utilized 
within prediction models. We sought to (1) identify empirically derived (unadjusted) 
cut points for vital signs for adult patients encountered by emergency medical ser-
vices (EMS), (2) evaluate differences in age-adjusted cutoffs for vital signs in this 
population, and (3) evaluate unadjusted and age-adjusted vital signs measures with 
in-hospital outcomes.
Methods: We used two multiagency EMS data sets to derive (National EMS 
Information System from 2018) and assess agreement (ESO, Inc., from 2019 to 2021) 
of vital signs cutoffs among adult EMS encounters. We compared unadjusted to age-
adjusted cutoffs. For encounters within the ESO sample that had in-hospital data, we 
compared the association of unadjusted cutoffs and age-adjusted cutoffs with hospi-
talization and in-hospital mortality.
Results: We included 13,405,858 and 18,682,684 encounters in the derivation and 
validation samples, respectively. Both extremely high and extremely low vital signs 
demonstrated stepwise increases in admission and in-hospital mortality. When evalu-
ating age-based centiles with vital signs, a gradual decline was noted at all extremes 
of heart rate (HR) with increasing age. Extremes of systolic blood pressure at upper 
and lower margins were greater in older age groups relative to younger age groups. 
Respiratory rate (RR) cut points were similar for all adult age groups. Compared to 
unadjusted vital signs, age-adjusted vital signs had slightly increased accuracy for HR 
and RR but lower accuracy for SBP for outcomes of mortality and hospitalization.
Conclusions: We describe cut points for vital signs for adults in the out-of-hospital 
setting that are associated with both mortality and hospitalization. While we found 
age-based differences in vital signs cutoffs, this adjustment only slightly improved 
model performance for in-hospital outcomes.
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INTRODUC TION

Early hospital notification is widely used to rapidly mobilize receiving 
teams for trauma,1,2 stroke,3,4 or cardiac catheterization.5 Yet these 
disease-specific notifications do not address all critically ill patients 
encountered in emergency care settings, where patients present with 
other time-sensitive or undifferentiated conditions such as nontrau-
matic hemorrhage, respiratory failure, and shock. Early warning scores 
and predictive models can help identify patients at highest risk of 
critical illness across emergency care settings.6,7 Predictive models 
among adults have been reported to identify patients at risk of poor 
outcomes8,9 and to screen for sepsis.10,11 Similar instruments identify 
adults at risk of mortality or other outcomes associated with severe 
injury following trauma.12–14 At the heart of many of these models is an 
assessment for abnormal vital signs based on a comparison with normal 
values derived from a healthy population. Other risk prediction mod-
els have incorporated vital signs for use more broadly and include the 
Rapid Acute Physiology Score,15 Rapid Emergency Medicine Score,16,17 
Modified Early Warning Score,18 and National Early Warning Score.19

The early identification of patients in the prehospital setting with 
structured notification mechanisms initiated prior to arrival can op-
timize the use of hospital-based resources, especially in high-cen-
sus emergency departments (ED), where critically ill patients may 
not otherwise be rapidly identified. As prehospital assessments are 
among the first clinical assessments of patients, they could have an 
important role in informing ED clinicians of patients needing rapid 
evaluation. A number of early warning systems have been described 
from the EMS population, which may be used to facilitate the 
rapid identification of patients with critical illness or injury.6,7,20,21 
However, vital signs in the out-of-hospital setting may often be al-
tered by pain, anxiety, or other confounding factors aside from the 
underlying disease, making their comparison to healthy subjects po-
tentially flawed. For example, in an analysis of over 3.7 million pe-
diatric patients encountered by a nationally representative sample 
of emergency medical services (EMS) agencies, 76% of patients had 
at least one abnormal vital sign based on Pediatric Advanced Life 
Support criteria.20

As an alternative approach, vital signs may be classified using 
centiles, in which these measures are assessed based on their relative 
position within the population of interest, expressed in terms of the 
percentage of data points that fall below it. The use of centile-based 
vital signs specific to the population of interest may provide more 
relevant data compared to what is commonly used in early warning 
systems.6,7,20,21 Centile distributions may be calculated for an overall 
sample or may be adjusted by one or more variables. Specifically, 
age-based vital signs criteria have recently been incorporated into 
trauma triage guidelines.22 Differences in vital signs among adult 
age groups, particularly for older patients, may enhance the identi-
fication of adults with critical illness. However, limited information 
exists on the relationship between age and vital signs as part of risk 
prediction models for adults cared for by EMS.1

In this study, we first sought to empirically derive centiles for 
heart rate (HR), respiratory rate (RR), and systolic blood pressure 

(SBP) for adults with out-of-hospital emergencies who were trans-
ported to an ED. Second, we aimed to evaluate the impact of ad-
justing for age in the evaluation of centile curves for vital signs to 
identify practical targets for adjustment of vital signs classification 
in adult patients based on age categories. Third, we examined the 
association of both unadjusted and age-adjusted vital signs with hos-
pital admission and in-hospital mortality.

METHODS

Study design and setting

We derived centiles of vital signs for adults with out-of-hospital 
emergencies using a nationally representative cross-sectional data-
base of EMS encounters within the United States. We evaluated the 
association of age with vital signs in this setting based on research 
demonstrating the potential benefits of using age-adjusted vital 
signs in other contexts20,22 and based on research demonstrating 
changes in vital signs over the adult lifespan.23 We assessed agree-
ment for these data and correlated them to in-hospital outcomes 
using a separate national EMS data set. Finally, we evaluated the 
predictive value of vital signs among adults with out-of-hospital 
emergencies. The performance of this study was approved by our 
institutional review board. This study adhered to the STrengthening 
the Reporting of OBservational studies in Epidemiology reporting 
guidelines.24

Cut point derivation was performed using a sampling of data 
from the 2018 National Emergency Medical Services Information 
System (NEMSIS; v.3.4.0). NEMSIS is a national retrospective EMS 
registry that includes standardized patient care records submitted 
by U.S. EMS agencies. The 2018 data set includes 22,532,890 EMS 
activations submitted by 9599 EMS agencies servicing 43 states 
and territories. Most of these encounters (94%) are for adults. We 
used this year of NEMSIS data for derivation to avoid potential over-
lap with encounters for the ESO data set that were used to assess 
agreement and to evaluate for in-hospital outcomes.

The second data set we used was composed of out-of-hospi-
tal patient care records from 2019 to 2021 within the ESO Data 
Collaborative (ESO, Austin, TX). ESO is a widely used EMS electronic 
patient care reporting system that includes patient care record data 
from approximately 1300 (in 2019) to 2000 EMS (in 2021) agencies 
in all 50 states. Annually, a standard data set for research purposes 
is available at no cost following a research proposal process. The 
ESO data set pulls data directly from the electronic reports with-
out relying on the aggregation and reporting of specific data ele-
ments through state EMS agencies.25 A subset of EMS agencies use 
a health data exchange software that bidirectionally links EMS and 
hospital outcome data, including ED and inpatient dispositions, using 
standard Health Level Seven messaging (HL7), a global messaging 
standard for the exchange of administrative and clinical data. We 
used 3 years of data from ESO to maximize the number of encoun-
ters with in-hospital data available.
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Selection of participants

From both data sources, we included all EMS encounters for pa-
tients, excluding (1) encounters with no documented age and (2) chil-
dren (<18 years). To place greater focus on undifferentiated patients 
evaluated from the scene in typical scenarios, we only included en-
counters for 9-1-1 responses treated by a Basic Life Support (BLS) or 
Advanced Life Support (ALS) clinician, but not a critical care service.

Measures

From each of the study samples, we extracted the vital signs of HR, 
RR, and SBP. We used the first vital sign documented by EMS per 
encounter, on the basis that these would be prior to any interven-
tions performed by that EMS service and because initial vital signs 
likely have greater use in predictive modeling or may be embedded 
into clinical decision support systems. We selected these variables 
based on their association with critical illness,15–19 their correlation 
with in-hospital measures,6–8 their potential association with age,23 
and their availability within the data set.

In encounters where time stamps were not provided (represent-
ing <3% of all vital signs), we used the first listed vital sign for that 
encounter in the NEMSIS data set. We additionally acquired the fol-
lowing descriptive data: age, sex, level of service (as ALS or BLS), 
census region, timing of the encounter (during the weekend and 
during three 8-h daytime periods), disposition, and the availability 
of the three vital signs.

Outcomes

Our primary outcome was the classification of vital signs using cen-
tile-based criteria. Our secondary outcomes were in-hospital mor-
tality and hospitalization.

Data analysis

We evaluated the distribution of our data using histograms and box-
plots by age. We excluded vital signs that had a high likelihood of 
being erroneous or were consistent with a moribund state: HR of 
<30 or >300 beats/min, RR of ≥120 or <1 breaths/min, and SBP of 
≤30 or ≥250 mm Hg. These cutoffs have been previously used in vital 
signs modeling research20,26 and have face validity as being poten-
tially erroneous or associated with a perimortem state. We identified 
the proportion of all vital signs (both initial and any subsequent vital 
signs) among included encounters identified in the NEMSIS data set 
that were excluded because of these criteria. We derived centiles 
in two ways: as an absolute cutoff and as an age-based centile. In 
keeping with our prior methods, we applied ±3 and ±2 of gauss-
ian noise to individual HR and RR measurements, respectively.20 We 

evaluated the distribution of the three vital signs using a cumulative 
distribution function. We identified cut points corresponding to the 
1st, 5th, 10th, 90th, 95th, and 99th centiles.

We developed age-based centiles for vital signs using a ran-
domly selected sample of 2.5 million encounters from the NEMSIS 
data set, on the basis of computational burden and our prior work 
demonstrating the adequacy of this sample size.20 Centile curves for 
each vital sign using the Generalized Additive Models for Location, 
Scale, and Shape (GAMLSS, v 5.4-1) modeling package. The GAMLSS 
package uses a distributional regression approach where all the pa-
rameters of the conditional distributions of the response variable 
are modeled using explanatory variables and has been used in prior 
research modeling vital signs.20,26,27 As GAMLSS requires a distribu-
tion to be specified, we evaluated the Box-Cox Power Exponential, 
skew exponential power types 1 and 2 for HR and SBP. For RR, we 
trialed the Box–Cox t and the power exponential distributions. We 
used the Bayesian Information Criterion as our criteria for optimal 
model selection. We additionally trialed log, Box–Cox, and square 
root transformations of the data to identify the one with the best 
fit. We summarized the median cut points for these vitals within 
the age groups of early adulthood (18–34 years), early middle age 
(35–44 years), late middle age (45–64 years), and late adulthood 
(≥65 years).28 To externally validate both the unadjusted and age-ad-
justed vital signs cutoffs, we compared the proportions between the 
derivation and validation data sets that were below the 1st, 5th, and 
10th centiles and above the 90th, 95th, and 99th centiles.

Within the ESO sample of patients who had in-hospital data avail-
able, we removed those who were still admitted at the time of data 
acquisition (classified as “still a patient” in the data set) or who had a 
secondary transfer to another facility, where the ultimate hospital out-
come was not available. We performed univariable analysis for each 
vital sign using a linear tail-restricted cubic spline function, with five 
knots selected using maximum likelihood estimation with the first and 
last knot set at the fifth and 95th percentiles for our secondary out-
comes. We compared the measures of accuracy, sensitivity, and spec-
ificity for the in-hospital outcomes of mortality and admission by age 
when using unadjusted and age-adjusted vital signs, considering vital 
signs as abnormal when they occurred below the 10th centile or above 
the 90th centile.20 We constructed calibration curves to visually in-
spect the model across the range of predicted probabilities. To better 
differentiate the performance of the extremes of individual vital signs, 
we reported the diagnostic accuracy of each vital sign for each out-
come at the <1st, <5th, <10th, >90th, 95th, and 99th centiles. When 
measuring the performance of a low cut point for vital signs, we only 
used the subset of encounters for which that measure was recorded 
as being less than the 50th centile. We performed the opposite when 
evaluating the performance of a high value for each vital sign. Finally, 
as an exploratory analysis, we evaluated the association of vital signs 
occurring below the 10th or above the 90th centile with in-hospital 
outcomes stratified by the presence or absence of traumatic injury. 
Analyses were performed using the gamlss (v5.4-1) and rms (v6.2-0)29 
packages in R, version 4.1.2 (R Foundation for Statistical Computing).
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RESULTS

Inclusion and demographics

A total of 22,532,890 EMS encounters were present within the 
2018 NEMSIS data set. After encounters with a missing age 
(n = 3,661,912), children (n = 1,204,760), responses not from the 
scene (n = 4,032,865), and responses served by critical care trans-
port teams (n = 227,495) were removed, 13,405,858 encounters 
were included. The ESO data set for the years 2019–2021 had 
29,269,188 EMS encounters. After encounters with a missing age 
(n = 3,780,867), children (n = 1,369,451), responses not from the 
scene (n = 4,350,088), and responses served by critical care trans-
port teams (n = 1,086,098) were removed, 18,682,684 remained. 
The ESO samples had generally similar characteristics with respect 
to age, sex, level of service, disposition, and availability of vital signs, 
but the ESO data set had a lower proportion of patients with trauma 
(Table S1). Extreme vital signs, which were removed for this analy-
sis, were identified in 1.5% of HRs (among 30,514,652 of all [initial 
and subsequent] documented HRs), 0.8% of RRs (among 26,685,919 
of all documented RRs), and 0.5% of SBPs (among 27,255,955 of all 
documented SBPs).

Distribution of vital signs and model selection

The cumulative distribution plots of all three vital signs had a middle 
component with a rapidly increasing slope (Figure 1). The proportion of 
patients above and below each cut point defined by the derivation set 
was similar in the ESO data set (Table S2), with all differences <1.5%, 
except for the ≤10% cut point for RR, where the deviation was 1.7%.

Age-based centiles for vital signs

Boxplots by age are provided in Figure S1. In age-based models for 
vital signs, a Box–Cox transformation with a Box–Cox power expo-
nential distribution for HR and SBP, and a square root transforma-
tion with Box–Cox t distribution for RR provided the best fits for 
modeling. The proportion of patients above and below each age-
based cut point defined in the derivation set was again similar in the 
ESO data set (Table S3).

Cut points for each age group are provided in Table 1. A grad-
ual decline was noted at all extremes of HR with increasing age. For 
example, a HR of 134 beats/min marked the upper 95th percentile 
during early adulthood, but this declined to 123 beats/min during 

F I G U R E  1  Histograms (A–C) and cumulative distribution plots (D–F) for vital signs. These graphs describe the probability of a vital sign 
having a value less than or equal to that value. For example, 75% of initial heart rates assessed by EMS are <100 beats/min. Red dashed lines 
indicate the selected cut points for each vital sign at 1%, 5%, 10%, 90%, 95%, and 99%.
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late adulthood. The extremes of SBP at upper and lower margins 
were greater in older age groups relative to younger age groups. A 
SBP of 168 mm Hg marked the 95th centile for young adults, com-
pared to 195 mm Hg for older adults. A SBP of 89 mm Hg represented 
the first centile for young adults, compared to 75 mm Hg for older 
adults. RR cut points were similar for all adult age groups.

In-hospital outcomes

Within the ESO data set, in-hospital data were available for 
2,510,261 transports. This sample more frequently involved re-
sponses with ALS clinicians and more frequently had vital signs re-
ported (Table S4).

In-hospital mortality

Among encounters within the ESO data set, in-hospital mortality oc-
curred in 67,035 (2.7%). Using unadjusted vital sign cutoffs, in-hospi-
tal mortality among patients with a HR between the 10th and 90th 
percentiles was 2.0% (Table 2). This rose in both the upper and the 
lower extremes and was highest (11.4%) among patients below the 
first centile. Mortality among patients with a RR between the 10th 

and 90th centiles was 1.5%. This again increased in the extremes 
and was highest among patients below the 1st centile (17.4%). 
Mortality among patients with SBP in the 10th–90th centiles was 
1.7%. Mortality was higher among patients with high blood pressure 
(3.0% among patients >99th centile) and markedly higher among pa-
tients with hypotension (14.3% among patients below the 1st cen-
tile). In spline-based models, a U-shaped curve was demonstrated 
for HR and RR when using both unadjusted values and age-adjusted 
values (Figure 2). When inspecting calibration, all parameters dem-
onstrated a tendency to overestimate mortality at higher ranges 
of predicted probability (Figure S2). Compared to unadjusted vital 
signs, adjusted vital signs had slightly higher accuracy for RR, equal 
accuracy of HR, and lower accuracy for SBP (Table 3). The specific-
ity of individual vital signs to predict mortality was greater at the 
extremes, but these cutoffs were generally associated with lower 
sensitivity (Table S5).

Hospitalization

Hospitalization occurred in 866,690 (34.5%) patients. The proportion 
with hospitalization for all three vital signs was greater among the 
extremes of vitals relative to those in the 10th–90th centile range. In 
spline-based models, all demonstrated a pointed (“V”-shaped) curve, 

Vital sign and 
centile

Early adulthood 
(18–34)

Early middle 
age (35–44)

Late middle 
age (45–64)

Late adulthood 
(65+)

HR (beats/min)

99 154 153 151 149

95 134 132 128 123

90 124 122 118 111

10 72 72 69 63

5 67 66 64 57

1 56 55 53 48

RR (breaths/min)

99 35 34 36 38

95 24 24 25 25

90 22 22 22 22

10 14 14 14 14

5 12 12 12 12

1 8 8 8 8

SBP (mm Hg)

99 188 207 219 220

95 168 182 192 195

90 159 170 179 183

10 110 110 108 105

5 103 102 98 94

1 89 86 79 75

Abbreviations: HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure.

TA B L E  1  Summary of cutoffs of vital 
signs by age group.

 15532712, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acem

.14821 by Z
efat A

cadem
ic C

ollege, W
iley O

nline L
ibrary on [14/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 215RAMGOPAL et al.

with a higher overall probability of hospitalization at extreme input 
values (Figure 3). When using unadjusted RR, an additional hinge 
occurred at the 95th centile, following which risk of hospitaliza-
tion increased less acutely. Calibration was superior for HR and RR 
when using age-adjusted vital signs; calibration was superior for SBP 
when using unadjusted values (Figure S3). Compared to unadjusted 
vital signs, adjusted vital signs again had slightly increased accuracy 
for HR and RR but lower accuracy for SBP. The specificity of indi-
vidual vital signs to predict hospitalization was again greater at the 
extremes, with greater drop-offs in sensitivity when using the <1st 
and>99th centiles (Table S6).

When comparing patients with (n = 471,193) and without 
(n = 2,039,068) traumatic injury, age-based vital signs demonstrated 
improved accuracy compared to unadjusted vital signs for HR and 
RR among both groups (Tables S7 and S8). Among all unadjusted 
and age-adjusted vital signs, the accuracy was greater for predicting 
in-hospital outcomes for patients with trauma compared to those 
without trauma.

DISCUSSION

We used a large multiagency EMS data set to derive centiles for vital 
signs among adults encountered by EMS. We used a second multia-
gency data set to assess for the agreement of these centiles and 
evaluate their role in predicting in-hospital outcomes. Differences 
among vital sign ranges across adult age groups were most notable 
for the upper limits of HR and for the extremes of SBP. Univariable 
analyses suggested only small changes in performance between un-
adjusted and age-adjusted vital signs. Future efforts toward multi-
variable modeling to identify critically ill adults among those with 
out-of-hospital emergencies may benefit in some contexts by using 
age-based centiles for vital signs in addition to other assessment 
data.

Our findings support the use of empirically derived cutoffs 
for the assessment of adults with out-of-hospital emergencies, 
without the need to adjust for age when predicting for in-hospi-
tal outcomes. We expand upon research evaluating centile-based 
criteria for vital signs among adults in the acute care setting by 
the development and comparison of unadjusted and age-adjusted 
models.6,7 For example, a HR of 110 beats/min, which corresponds 
to the 75th percentile in younger adults (<65 years), may be of 
much greater significance in older adults, where it falls at close to 
the 95th percentile. Despite this, the use of age only resulted in a 
small improvement in model performance compared to unadjusted 
models for predicting in-hospital outcomes. Our findings differ 
from recent work suggesting the use of differing age-based crite-
ria (specifically for SBP) among adults with trauma. The majority 
of these studies have been limited to geriatric patients, without 
comparisons for younger adults.30–33 In studies that did provide 
a direct comparison, the use of a higher (100–110 mm Hg) cutoff 
to define hypotension had greater sensitivity in both geriatric and 
younger adult patients, though there was a relatively greater loss 
of specificity among younger adults with this change.34,35 While 
age adjustment of vital signs did not enhance predictive modeling 
for adults with out-of-hospital emergencies overall, its application 
may be of greater benefit within specific subpopulations of adults 
with out-of-hospital emergencies, such as trauma, stroke, or ST-
elevation myocardial infarction.34,35

An appropriate next step will be to prospectively validate and 
correlate these centile-based vital sign criteria with stakeholder-de-
fined in-hospital outcomes to subsequently enhance clinical care 
by better identifying at-risk or unstable adults across a variety of 
clinical complaints. If demonstrated to be associated with clinically 
meaningful outcomes, these findings may be incorporated into ED 
alert systems or point-of-care decision tools used by first respond-
ers. The use of age-based criteria may add further granularity in the 
interpretation of vital signs, at the cost of increased complexity. This 
added complexity could be mitigated through point-of-care deci-
sion support tools embedded into an electronic health record sys-
tem or smartphone applications. Prior work has demonstrated the 
potential utility of smartphone-based decision support to assist in 
medical decision making in the out-of-hospital setting.36 The use of 

TA B L E  2  Performance of unadjusted vital signs cutoffs 
associated with in-hospital mortality and hospitalization among 
encounters in the ESO data set with available in-hospital data.

Vital sign and 
centile cutoff

Number 
meeting criteria Mortality Admission

HR (n = 2,490,543)

≥99 34,420 (1.4) 3120 (9.1) 17,516 (50.9)

≥95 160,651 (6.5) 9126 (5.7) 75,346 (46.9)

≥90 297,847 (12.0) 14,136 (4.7) 131,105 (44.0)

10–90 1,941,501 (78.0) 39,240 (2.0) 637,699 (32.8)

≤10 251,195 (10.1) 10,214 (4.1) 93,353 (37.2)

≤5 145,145 (5.8) 7768 (5.4) 57,860 (39.9)

≤1 36,928 (1.5) 4206 (11.4) 18,605 (50.4)

RR (n = 2,447,808)

≥99 34,244 (1.4) 4096 (12.0) 22,059 (64.4)

≥95 175,640 (7.2) 13,948 (7.9) 105,475 (60.1)

≥90 288,396 (11.8) 18,595 (6.4) 159,131 (55.2)

10–90 1,867,016 (76.3) 28,763 (1.5) 590,826 (31.6)

≤10 292,396 (11.9) 16,836 (5.8) 97,635 (33.4)

≤5 122,549 (5.0) 13,312 (10.9) 44,101 (36)

≤1 14,199 (0.6) 2470 (17.4) 5347 (37.7)

SBP (n = 2,474,132)

≥99 31,599 (1.3) 948 (3.0) 15,133 (47.9)

≥95 153,517 (6.2) 3158 (2.1) 63,340 (41.3)

≥90 286,493 (11.6) 5205 (1.8) 111,174 (38.8)

10–90 1,911,202 (77.2) 33,050 (1.7) 608,946 (31.9)

≤10 276,437 (11.2) 18,796 (6.8) 136,584 (49.4)

≤5 151,750 (6.1) 13,636 (9.0) 83,533 (55.0)

≤1 35,755 (1.4) 5125 (14.3) 22,108 (61.8)

Note: Data are reported as n (%).
Abbreviations: HR, heart rate; RR, respiratory rate; SBP, systolic blood 
pressure.
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F I G U R E  2  Prediction plots for Z-scored vital signs in univariable analyses using (A–C) unadjusted vital signs and (D–F) Z-scored for age 
vital signs for an outcome of in-hospital mortality. In plots A–C, red lines indicate (from left to right) the 1st, 5th, 10th, 90th, 95th, and 99th 
centiles.

Vital sign and measure Accuracy (%) Sensitivity (%) Specificity (%)

Outcome: mortality

HR

Unadjusted 77.4 38.3 78.4

Age-adjusted 77.4 40.9 78.4

RR

Unadjusted 76.5 55.2 77.1

Age-adjusted 80.3 52.7 81.0

SBP

Unadjusted 78.3 40.4 79.2

Age-adjusted 77.5 38.2 78.4

Outcome: admission

HR

Unadjusted 61.4 26.0 80.1

Age-adjusted 61.9 26.9 80.4

RR

Unadjusted 62.6 30.3 79.8

Age-adjusted 64.1 26.9 83.9

SBP

Unadjusted 63.1 27.3 82.0

Age-adjusted 61.4 26.0 80.2

Abbreviations: HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure.

TA B L E  3  Metrics of accuracy for 
mortality and admission when using 
adjusted and unadjusted cutoffs for 
vital signs when classifying vital signs as 
abnormal when occurring at the extremes 
of below the 10th and above the 90th 
centile.
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centile-based vital sign data may also be useful to identify patients 
for whom consultation with medical command is advisable outside 
of specific clinical syndromes (e.g., trauma, stroke, ST-elevation 
myocardial infarction) or based on the identified need for specific 
interventions prescribed by clinical EMS protocols. This consultation 
with a physician may help to identify the need for nonprotocolized 
out-of-hospital interventions on the sickest subset of patients and 
identify those who may benefit from emergent assessment and eval-
uation by in-hospital personnel upon hospital arrival.

Selection of the optimal cut points for vital signs as part of hos-
pital alert systems must consider the proportion classified by spe-
cific ranges and the sensitivity and specificity of these cut points, 
along with the action intended to be solicited by the alert system 
(e.g., triage to a specific location of the ED or mobilization of specific 
resources). Prediction tools that prioritize greater specificity may 
represent the best target group for out-of-hospital alert systems 
that can facilitate room availability with early physician and nurse 
presence in the ED. In one study of hospitalized adults, for exam-
ple, investigators used centile-based vital signs to provide graded 
responses for incorporation into early warning systems.7 By priori-
tizing specificity, these centiles may mitigate alarm fatigue and over-
utilization of the alert system by identifying patients that are most 
in need of prompt attention without overclassifying a large number 
of patients as being critically ill. Alternately, vital sign ranges that are 
highly sensitive for clinically meaningful outcomes may be useful to 
triage low-risk patients to low-acuity areas of an ED following an ini-
tial brief evaluation, such as to the waiting room. For these systems 

to enhance care, improved interoperability between EMS and ED 
data is required. Recent advances suggest that existing limitations in 
data sharing between EMS and the ED can be overcome.37

The use of centile-based vital signs demonstrated associations 
with in-hospital mortality and hospitalization among our patient sam-
ple. We build on prior work evaluating early warning score systems 
for vital signs.15–19 Notably, univariable models for age-adjusted HR 
and RR demonstrated improved model fit for mortality compared 
to the use of these as unadjusted values, though the gain in perfor-
mance when comparing unadjusted to age-adjusted vital signs was 
small. The improved performance of the Z-score–based model for 
HR is likely due to its adjustment for observed age-based variations. 
In contrast, SBP did not demonstrate superior performance for mor-
tality compared to the use of this as an unadjusted value, suggesting 
that age-related physiologic changes may be of lesser importance 
than the absolute value of this measure. Importantly, the use of vital 
signs alone demonstrates poor predictive capacity for identifying 
mortality overall, as demonstrated in calibration plots. This calibra-
tion may be due to several reasons, including the low prevalence 
of these outcomes, the limited ability to generate predictions at 
extreme percentiles, and extrapolations made from the linear tail 
of the spline prediction model. Further research will be needed to 
compare the potential benefits of age-adjusted vital signs with un-
adjusted vital signs within multivariable prediction models. Prior 
studies, for example, have incorporated variables such as source of 
presentation (e.g., nursing home), mental status, and pulse oxime-
try, among other variables in predicting in-hospital outcomes.8 In 

F I G U R E  3  Prediction plots for Z-scored vital signs in univariable analyses using (A–C) unadjusted vital signs and (D–F) Z-scored for age 
vital signs for an outcome of hospitalization. In plots A–C, red lines indicate the 1st, 5th, 10th, 90th, 95th, and 99th centiles.
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addition, models may be improved upon by incorporating outcomes 
into a consensus-based composite measure, which may include need 
for operative measurement, mechanical ventilation, intensive care 
unit hospitalization, and need for critical lifesaving procedures.

LIMITATIONS

Our findings are subject to limitations. Both the NEMSIS and ESO 
data sets were built using retrospective data. Not all encounters had 
vital sign data. We excluded extremes of vital signs based on implau-
sibility. While these criteria are subjective, the use of a very large 
data set likely limits the impact of outliers. Some values may have 
been rounded by EMS clinicians at the point of care and the NEMSIS 
data set has little information on the mode of vital sign acquisition 
(such as monitor-measured vs. manual ascertainment). While this 
type of data set lacks the standardization of a research setting, its 
large size likely outweighs this limitation and more pragmatically de-
scribes the broader interpretation of vital signs regardless of these 
specific elements. Vital signs may be modified due to reasons unre-
lated to presenting pathology (such as use of beta blockers to modify 
HR); these data were not available in our data set. In practice, how-
ever, vital signs in the out-of-hospital setting often need to be inter-
preted in the absence of this information. Despite these limitations, 
these empirically derived vital signs for out-of-hospital encounters 
provide a useful basis for further work prospectively validating these 
findings and employing them in out-of-hospital clinical decision and 
support algorithms.

CONCLUSIONS

We developed a distributional model for vital signs among adults in 
the out-of-hospital setting, both with and without age. Age-based 
distributional models demonstrated changes in HR and SBP across 
the lifespan. However, their application in predicting in-hospital out-
comes had similar performance to unadjusted values. In future steps, 
these vital sign distributions may be combined with other routinely 
collected emergency medical systems data to generate meaningful 
prediction models to identify critically ill patients in the out-of-hos-
pital setting. These data may be additionally useful for use in hospi-
tal-based early warning systems.
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