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ABSTRACT
Background Major incidents (MIs) are an important cause 
of death and disability. Triage tools are crucial to identifying 
priority 1 (P1) patients—those needing time- critical, life- 
saving interventions. Existing expert opinion- derived tools 
have limited evidence supporting their use. This study employs 
machine learning (ML) to develop and validate models for 
novel primary and secondary triage tools.
Methods Adults (16+ years) from the UK Trauma Audit 
and Research Network (TARN) registry (January 2008–
December 2017) served as surrogates for MI victims, 
with P1 patients identified using predefined criteria. The 
TARN database was split chronologically into model 
training and testing (70:30) datasets. Input variables 
included physiological parameters, age, mechanism and 
anatomical location of injury. Random forest, extreme 
gradient boosted tree, logistic regression and decision 
tree models were trained to predict P1 status, and 
compared with existing tools (Battlefield Casualty Drills 
(BCD) Triage Sieve, CareFlight, Modified Physiological 
Triage Tool, MPTT- 24, MSTART, National Ambulance 
Resilience Unit Triage Sieve and RAMP). Primary and 
secondary candidate models were selected; the latter 
was externally validated on patients from the UK 
military’s Joint Theatre Trauma Registry (JTTR).
Results Models were internally tested in 57 979 TARN 
patients. The best existing tool was the BCD Triage Sieve 
(sensitivity 68.2%, area under the receiver operating 
curve (AUC) 0.688). Inability to breathe spontaneously, 
presence of chest injury and mental status were 
most predictive of P1 status. A decision tree model 
including these three variables exhibited the best test 
characteristics (sensitivity 73.0%, AUC 0.782), forming 
the candidate primary tool. The proposed secondary tool 
(sensitivity 77.9%, AUC 0.817), applicable via a portable 
device, includes a fourth variable (injury mechanism). This 
performed favourably on external validation (sensitivity 
of 97.6%, AUC 0.778) in 5956 JTTR patients.
Conclusion Novel triage tools developed using ML 
outperform existing tools in a nationally representative 
trauma population. The proposed primary tool requires 
external validation prior to consideration for practical 
use. The secondary tool demonstrates good external 
validity and may be used to support decision- making by 
healthcare workers responding to MIs.

INTRODUCTION
In the immediate aftermath of a major incident (MI), 
patient needs exceed the resources available to treat 

them1–5: triage tools seek to categorise patients, to 
guide the order of treatment, transport from the 
scene and the choice of medical facility for definitive 
care.5 6 A vital function of triage tools is to identify 
patients requiring time- critical, life- saving interven-
tions (priority 1 or P1 patients). Failure to identify 
these patients (undertriage) is associated with abso-
lute harm arising from delays in care or selection of 
an inappropriate medical facility.6 7 However, over-
triage may risk overwhelming healthcare facilities 
with patients not requiring time- critical treatment.2

Primary triage, conducted at the scene of an 
MI, uses paper- based flow diagrams that are quick 
and simple to apply under challenging condi-
tions.8 Existing primary triage tools have largely 
been developed using expert opinion, often with 
limited evidence to support their use.6 These 
include the National Ambulance Resilience Unit 
(NARU) Triage Sieve (current UK tool for adults), 
the Australian CareFlight and the US Simple Triage 
And Rapid Treatment (START).6 9 10 These tools 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ During major incidents (MIs) (eg, terrorist 
attacks), triage tools have a crucial role in 
maximising overall survival by identifying 
priority 1 (P1) patients.

 ⇒ Existing tools, derived using expert opinion, 
have limited evidence to support their use.

WHAT THIS STUDY ADDS
 ⇒ In this study, novel machine learning- based 
primary and secondary triage tools surpassed 
the current UK National Ambulance Resilience 
Unit Triage Sieve and other existing tools in 
identifying P1 patients within a nationally 
representative trauma population.

 ⇒ The secondary tool demonstrated favourable 
external validity. However, the primary tool 
could not be externally validated due to missing 
GCS component data.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The proposed secondary tool, applicable using 
a portable device, may be used to support 
decision- making among healthcare workers 
responding to MIs.
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use ambulatory status to designate priority 3 (minor) category, 
followed by physiological assessments to distinguish P1 from P2 
(less critical) patients. A recent study demonstrated that the UK 
military’s Battlefield Casualty Drills (BCD) Triage Sieve attained 
greatest sensitivity among 10 international primary triage tools 
in detecting P1 status among adults; however, this was associated 
with an overtriage rate of 72%.10

Primary triage is often, but not always, followed by a further 
targeted prehospital clinical assessment of patients known as 
secondary triage. This is usually undertaken in a place of rela-
tive safety (eg, Casualty Clearing Station or hospital reception 
area)1 8; thus, the additional use of medical equipment and/
or portable devices is more plausible. Two existing secondary 
MI triage tools are the UK’s Major Incident Medical Manage-
ment and Support Triage Sort which has suboptimal sensitivity 
(15.7%) in predicting the need for life- saving intervention,11 and 
the US points- based Sacco Triage Method (developed to predict 
mortality) which is time- consuming and complex to apply.9

Anatomical assessment of injuries has yet to feature in any 
MI triage tool, yet this is commonly used in the field triage of 
singly injured patients.12 Advanced age is associated with worse 
outcomes following injury; however, existing tools do not incor-
porate this in patient assessment.13 There is scope to develop 
evidence- based primary and secondary MI triage tools which 
offer greater sensitivity while decreasing overtriage compared 
with the BCD Triage Sieve, yet preserve applicability. Tree- based 
machine learning models have demonstrated utility in clinical 
risk stratification, with the ability to capture non- linear interac-
tions between input variables.14 15 This study aimed to develop 
machine learning models that can be adapted into primary and 
secondary MI triage tools and to externally validate these models 
using an independent population of injured patients.

METHODS
Database for model training and internal testing
Model development and validation were conducted according 
to Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis guidelines.16 Adult (16+ 
years) patients from the Trauma Audit and Research Network 

(TARN) registry presenting between 1 January 2008 and 31 
December 2017 were included.17 The TARN registry prospec-
tively captures prehospital and hospital data from 169 hospitals 
in England and Wales for patients who meet the following inclu-
sion criteria: length of stay >72 hours or admission to intensive 
care and/or death in hospital.17 TARN does not include prehos-
pital deaths. Patients for whom any input variables required for 
modelling were missing were excluded. Using hospital arrival 
dates recorded by TARN, the database was split temporally 
(70:30) to generate model training and internal testing datasets, 
respectively.

Primary outcome of interest
The primary outcome of interest was P1 status, defined as the 
need for time- critical life or limb- saving surgery and/or advanced 
resuscitative measures.18 Each patient was retrospectively desig-
nated a triage category (priority 1, priority 2, priority 4/expectant 
or dead) (see flow diagram in online supplemental figure 1) 
using validated, consensus- derived definitions (table 1).10 18 Prior 
to the modelling phase, patients were designated either P1 or 
non- P1. The small numbers of P4 and dead patients (who share 
physiological similarities to P1 patients) were excluded from the 
modelling as these may impede model performance.

Input variables selected for modelling
Input variables differ in their complexity and time taken for 
measurement. Variables that can be readily assessed by first 
responders in the MI setting were included in the modelling 
process (summarised in online supplemental table 1). This 
included all physiological parameters used by existing MI triage 
tools (first- recorded prehospital HR, RR and systolic BP) with 
the exception of capillary refill time, which has been found to be 
a poor reflection of circulatory status and is difficult to measure 
reliably in challenging settings and in non- white patients.6 10 19 
In addition to the ability to follow commands (GCS Motor) used 
by the CareFlight triage tool, all subcomponents of the GCS 
were included.6 However, total GCS score, although known 
to be an important predictor of outcomes in injured patients, 

Table 1 Triage category definitions

Dead  ► Cardiac and/or respiratory arrest at initial prehospital evaluation that is not responsive to needle decompression or airway positioning (or the 
delivery of two rescue breaths in children less than 12 years old)

 ► Lack of palpable pulse and need for CPR (ie, cardiac arrest) within the first 15 min of EMS arrival on scene

Priority 4 (expectant)  ► In patients aged 0–49 years: third- degree (full thickness) burns to >90% of the body
 ► In patients aged 50 years and over: third- degree (full thickness) burns to >80% of the body
 ► Penetrating trauma to the head that crosses the midline with agonal respirations and/or no motor response, decorticate posturing or decerebrate 

posturing (ie, GCS Motor ≤3)
 ► Blunt trauma to the head with agonal respirations and/or no motor response, decorticate posturing or decerebrate posturing (ie, GCS Motor ≤3)
 ► Uncontrolled haemorrhage that resulted in cardiac arrest (defined as a lack of palpable pulse and EMS initiation of CPR) prior to EMS transport

Priority 1  ► Neurological, vascular or haemorrhage- controlling surgery to the head, neck or torso performed within 4 hours of arrival to hospital
 ► Limb- conserving surgery performed within 4 hours of arrival at hospital on a limb that was found to be pulseless distal to the injury prior to surgery
 ► Escharotomy performed on a patient with burns within 2 hours of arrival at a hospital
 ► Chest tube placed within 2 hours of arrival at hospital
 ► An advanced airway intervention (eg, intubation, LMA, surgical airway) performed in the prehospital setting or within 4 hours of arrival at hospital
 ► IV vasopressors administered within 2 hours of arrival at hospital
 ► Arrived in the ED with uncontrolled haemorrhage
 ► Patient who required EMS initiation of CPR (ie, had a cardiac arrest) during transport, in the ED or within 4 hours of arrival at a hospital

Priority 2  ► All patients who do not meet the criteria for the other categories are considered priority 2

Priority 3  ► Discharged from ED with no X- rays or an extremity X- ray that was negative or showed an uncomplicated fracture (ie, a closed extremity fracture 
without significant displacement or neurovascular compromise); no laboratory testing; received only simple wound repair (single- layer suturing 
only); and received no medications intravenously (does not include fluids), or inhaled (does not include oxygen) from EMS or in the hospital

These definitions were derived by expert consensus and have been validated in a UK trauma population. Priority 4 (expectant) denotes injuries which are incompatible with life.
CPR, cardiopulmonary resuscitation; EMS, emergency medical services; IV, intravenous; LMA, laryngeal mask airway.
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was not included.7 12 Total GCS is time- consuming to calculate, 
with evidence suggesting that scores by paramedics frequently 
differ from those assigned by emergency physicians; hence, 
measurement under MI conditions may lack accuracy.5 19 20 The 
ability to breathe spontaneously is an important determinant 
of outcome and is assessed early within several existing triage 
tools.6 10 TARN does not explicitly record whether patients are 
spontaneously breathing at the scene of injury, nor does it record 
the indication for airway interventions.17 We assumed that all 
patients who received an advanced airway intervention at the 
scene (defined as intubation and ventilation and/or surgical 
airway and/or the need for airway support) were unable to 
breathe spontaneously.10 21

The presence of injury in anatomical regions including the 
head, face, chest and limb(s) was included as input variables for 
modelling using retrospectively calculated Abbreviated Injury 
Severity (AIS) scores (TARN records AIS based on hospital 
rather than prehospital data). A binary input (AIS=0, AIS >0) 
was used rather than a graded assessment of severity. Due to the 
known difficulties in identifying intra- abdominal injuries based 
on clinical assessment alone, and the requirement to undertake 
detailed clinical assessment in order to reliably identify spinal 
injuries, the presence of spinal and abdominal injuries was not 
included as input variables.22 23 Patient age was dichotomised 
into age ≥65 years (yes or no), which may be reliably identified 
by first responders.12 Broad injury mechanism (blunt or pene-
trating) was included.

Input variables described thus far were deemed appropriate for 
inclusion in both primary and secondary triage tools. Although 
not conducive to primary triage due to the need for calcula-
tion, shock index (HR/systolic BP), which may correlate better 
with outcome than HR or systolic BP alone, was included in 
the modelling process as a potential component of a secondary 
triage tool.24

Model training and internal testing
Four machine learning methods were applied to the model 
training dataset to distinguish P1 from non- P1 patients. Decision 
tree (RPART) methodology was included because models can be 
visualised as bifurcating trees, closely resembling the format of 
existing primary triage tools. Two other tree- based models with 
demonstrated value in clinical risk stratification, random forest 
(RF) and eXtreme Gradient Boosting (XGB), were trained.25 26 
Further methodological details are presented as online supple-
mental material. Finally, we included an L1- regularised logistic 
regression model. We anticipated that non- P1 patients would 
substantially outnumber P1 patients; hence, we adopted an 
undersampling strategy to balance the data by leaving out 
random samples of non- P1 patients.14 For each of these models, 
fivefold cross- validation was applied.26

To generate models that were no more complex to apply than 
existing primary triage tools, modelling included all possible 
combinations of 3–7 of the available 13 input variables. Model 
building and selection strategy are summarised in online supple-
mental figure 2. Models trained using all 13 input variables, 
although too complex for practical application as triage tools, 
were also considered as comparators (online supplemental table 
2). Additionally, we compared the triage assignments (namely, 
P1 status) of 10 existing international primary triage tools to the 
testing dataset (online supplemental table 3).10

Previous studies demonstrate that elders (aged 65+ years) are 
over- represented in the TARN population while constituting 
18.3% of the UK population10; hence, during testing, we split 

the TARN testing set by age (ages 16–64 years and 65+ years) to 
further evaluate model performance.

Determining feature importance
We assessed the relative importance of individual features (input 
variables) in model predictions using the TreeSHAP method, 
a model- agnostic, individualised feature attribution method 
for explaining predictions.27 The resulting Shapley value for 
a particular feature measures the expected change in model 
prediction when that feature is present relative to the average 
model prediction. Additionally, feature importance was esti-
mated by the contribution of each feature to the overall XGB 
model- predictive performance.27

Selection of models as candidates for primary and secondary 
triage tools
We sought to identify models that achieved the best possible 
performance (maximal sensitivity in identifying P1 patients, 
but also favourable overtriage rate and area under the receiver 
operating curve (AUC)) across all ages as well as age subgroups, 
using the minimal number of input variables, to maintain prac-
tical applicability. We predetermined that selected models must 
outperform the best performing existing triage tool, as identified 
by our study.

In keeping with existing practice, the primary tool candidate 
was intended to be a paper- based, simple algorithm. The model 
selected as a secondary tool was adapted into a web- based proto-
type using the R shiny application.

External validation of models using the Joint Theatre Trauma 
Registry database
The UK military’s Joint Theatre Trauma Registry (JTTR) 
(February 2002–December 2016) was used to externally vali-
date the selected models. JTTR includes consecutive patients 
who triggered trauma team activation at a deployed medical 
treatment facility, largely comprising combat casualties during 
military operations in Iraq and Afghanistan.

Children (<16 years), patients with erroneous data (eg, age 
over 110 years) and those with injuries recorded as both blunt 
and penetrating were excluded from the validation (see online 
supplemental figure 1). As we expected a paucity of prehospital 
data in this population,28 patients’ first recorded hospital physi-
ology was used. Patients with missing data for the input variables 
were not excluded. Subcomponents of GCS are not routinely 
recorded within JTTR; these were derived for patients with GCS 
15 and unavailable for those with GCS <15. Furthermore, we 
evaluated candidate models on a subset of JTTR patients with 
sufficient data to apply the best performing existing tool (subse-
quently found to be the BCD Triage Sieve), thereby facilitating 
direct comparison. Triage category definitions were applied as 
described earlier (table 1): since JTTR does not record the time 
of interventions, those performed at deployed medical treatment 
facilities were presumed to have occurred within 4 hours.28

Statistical analyses
Patient characteristics across the model training, internal testing 
and external validation datasets were compared using the Χ2 
test (Injury Severity Score (ISS) and age compared using Mann- 
Whitney U test); p<0.05 was considered statistically signifi-
cant. Model performance is reported as sensitivity, specificity, 
undertriage (1- sensitivity) and overtriage (1- positive predictive 
value). The 95% CIs for the AUC were calculated using deLong’s 
method (pROC R package, V.1.17.0.1).29 The 95% CIs for 
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models’ sensitivity at given specificity points were calculated 
using 500- stratified bootstrap replicates.29

Patient and public involvement
Patients or the public were not involved in the design, or conduct, 
or reporting, or dissemination plans of our research.

RESULTS
Training dataset and primary outcome of interest
A total of 200 728 patients were captured by TARN over the 
10- year period. After exclusions, the sample consisted of 193 261 
patients, of which 21 878 patients (11.3%) fulfilled P1 criteria.

The model training dataset comprised 135 282 patients, 
with a median age of 64.3 years, in- hospital mortality of 5.7% 
and predominantly blunt injuries (97%), most commonly low 
falls (56.3%) (table 2). Patients within the internal test dataset 
(n=57 979) were older (median age 70.9 years vs 64.3 years, 
respectively, p<0.001) and more often injured by a low- level fall 
(62.7% vs 56.3%, p<0.001) compared with patients within the 
model training dataset.

Model training and internal testing
In the test set, the BCD Triage Sieve demonstrated the greatest 
sensitivity at 68% with overtriage at 80.8% (table 3). Existing 
tools performed less well in the elders’ subgroup compared with 

younger (16–64 years) adults, with sensitivity 5.8–14.6% lower 
and overtriage rates 11.5–33.2% higher among elders (online 
supplemental table 3).

Four hundred fifty- six models were developed, which, when 
applied to the internal test dataset, demonstrated greater sensi-
tivity and AUC than all existing tools. Model selection was 
initially narrowed down to five decision tree models as candi-
dates for primary triage tools and 29 XGB models as candidates 
for secondary triage tools (see online supplemental figure 2). 
A comprehensive list, including performance by age subgroups 
within the internal (TARN) testing and external validation 
(JTTR) datasets (described later), is detailed in online supple-
mental table 4A–C. Receiver operating curves demonstrating the 
performance of the novel primary and secondary tool candidate 
models when applied to the internal testing dataset are shown 
in figure 1.

Feature importance
The top 10 features (figure 2A), and their relative contribution 
in predicting P1 status (figure 2B) are presented. By far, the most 
important variable was breathing status (mean Shapley value 
1.2), followed by presence of a chest injury and GCS Verbal 
score. Age >65 years was negatively predictive of P1 status. Any 
abnormal GCS Verbal or GCS Motor score contributed substan-
tially in predicting P1 status (see figure 2B). The XGB method of 

Table 2 Patient and injury characteristics for the model training, testing and external validation cohorts
Model training dataset (70% TARN: 1 Jan 
2008–14 Jul 2016)

Model testing dataset (30% TARN: 15 Jul 
2016–31 Dec 2017)

External validation dataset (JTTR: 1 Feb 
2002–31 Dec 2016)

Gender

  Male 72 817 (53.8%) 29 532 (50.9%) 5830 (97.9%)

  Female 62 465 (46.2%) 28 447 (49.1%) 106 (1.8%)

  Missing data 0 (0.0%) 0 (0.0%) 20 (0.3%)

Injury Severity Score

  Median (IQR) 9 (9–16) 9 (9–17) 8 (2–17)

  Missing data 0 (0.0%) 0 (0.0%) 13 (0.2%)

Age

  Median (IQR) 64.3 (45.6–82.3) 70.9 (51.6–84.5) 24 (21–28)

  16–64 years 69 237 (51.2%) 24 769 (42.7%) 5256 (88.2%)

  65+ years 66 045 (48.8%) 33 210 (57.3%) 25 (0.4%)

  Missing data 0 (0.0%) 0 (0.0%) 675 (11.3%)

Discharge status

  Alive 127 624 (94.3%) 54 383 (93.8%) 5681 (95.4%)

  Dead 7657 (5.7%) 3596 (6.2%) 275 (4.6%)

  Missing data 1 (0.0%) 0 (0.0%) 0 (0.0%)

Injury mode

  Blunt 131 208 (97.0%) 56 473 (97.4%) 1092 (18.3%)

  Penetrating 4074 (3.0%) 1506 (2.6%) 4864 (81.7%)

  Missing data 0 (0.0%) 0 (0.0%) 0 (0.0%)

Injury mechanism

  Fall less than 2 m 76 169 (56.3%) 36 380 (62.7%) 78 (1.3%)

  Vehicle incident 30 195 (22.3%) 10 744 (18.5%) 389 (6.5%)

  Fall more than 2 m 17 838 (13.2%) 6725 (11.6%) 37 (0.6%)

  Blow(s) 4871 (3.6%) 1868 (3.2%) 0 (0.0%)

  Stabbing 2871 (2.1%) 1192 (2.1%) 29 (0.5%)

  Crush 1065 (0.8%) 268 (0.5%) 76 (1.3%)

  Shooting 328 (0.2%) 91 (0.2%) 2316 (38.9%)

  Burn 91 (0.07%) 27 (0.05%) 3 (0.1%)

  Blast 88 (0.07%) 50 (0.09%) 2926 (49.1%)

  Other 1766 (1.3%) 634 (1.1%) 86 (1.4%)

  Missing data 0 (0.0%) 0 (0.0%) 16 (0.3%)

JTTR, Joint Theatre Trauma Registry; TARN, Trauma Audit and Research Network.
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determining feature importance yielded similar rankings (online 
supplemental figure 3).

Primary and secondary triage tool candidate models
The decision tree model selected for clinical adaptation into 
a primary triage tool (figure 3) used three qualitative binary 
(yes/no) assessments (breathing status at scene, ability to obey 

commands, that is, GCS Motor score=6, and presence of 
a chest injury) to categorise patients as P1 or non- P1. This 
achieved 73.0% sensitivity, overtriage rate of 77.0% and AUC 
of 0.782 when applied to the internal testing dataset (see 
table 3).

The XGB model selected as a secondary triage tool (figure 4) 
combines four input variables: GCS Motor score, breathing 
status at scene, presence of chest injury and classification of 
injury as blunt or penetrating. This model achieved 77.9% sensi-
tivity, overtriage of 76.4% and AUC of 0.817 when applied 
to the internal testing dataset (figure 1 and table 3). This has 
been adapted into an online interactive tool (accessible via link: 
https://ywxtriageapp.shinyapps.io/mltriage/).

External validation of the secondary triage model (JTTR)
A total of 5956 JTTR patients met inclusion criteria (online 
supplemental figure 1). Median age was 24 years (IQR 21–28) 
and most were male (97.9%). Compared with patients in the 
TARN model training set, JTTR patients had lower mortality 
(4.6% vs 5.7%, p<0.001) and lower injury severity (median 
ISS 8 (IQR 2–17) vs median ISS 9 (IQR 9–16), p=0<0.001). A 
greater proportion of JTTR patients suffered penetrating trauma 
(81.7% vs 3.0%, p=0<0.001), with high prevalence of blast 
injury (49.1% vs 0.07%, p=0<0.001) and shooting (38.9% vs 
0.2%, p=0<0.001) (see table 2). A total of 2046 (34.3%) JTTR 
patients had missing GCS Motor scores.

Given the high proportion of JTTR patients missing GCS 
Motor scores, as well as inability for decision trees to perform 
predictions when data are missing (unlike XGB and RF), appli-
cation of the primary tool candidate model to JTTR patients 
would not reliably measure the model’s external validity. Hence, 
this was not performed.

Performance of the models shortlisted as candidates for a 
secondary triage tool for JTTR patients is shown in online supple-
mental table 4B and model calibration is presented as online 
supplemental figure 4. The model selected as a secondary tool 
(XGB model, ID 37) achieved sensitivity of 97.6%, overtriage 
of 57.5% and AUC of 0.778 (figure 1). Secondary candidate 
models were evaluated on a subset of JTTR patients containing 
sufficient data to apply the BCD Triage Sieve (n=5455), thereby 
facilitating direct comparison (online supplemental table 5): the 
secondary tool candidate attained comparatively higher sensi-
tivity (97.3% vs 80.2%), but had a higher overtriage rate (58.5% 
vs 47.4%).

Table 3 Performance characteristics of existing triage tools and novel machine learning models among adult patients (16+ years) in the testing 
(TARN) dataset

Sensitivity Specificity Undertriage Overtriage AUC

Existing tools

  BCD Triage Sieve 68.2 (66.9, 69.4) 69.5 (69.1, 69.9) 31.8 (30.6, 33.1) 80.8 (80.2, 81.3) 0.688 (0.682, 0.695)

  CareFlight 39.9 (38.6, 41.2) 94.5 (94.3, 94.7) 60.1 (58.8, 61.4) 56.4 (55.0, 57.8) 0.672 (0.666, 0.679)

  MPTT- 24 48.4 (47.1, 49.7) 66.4 (66.0, 66.8) 51.6 (50.3, 52.9) 86.7 (86.2, 87.2) 0.574 (0.567, 0.581)

  MSTART 54.9 (53.6, 56.2) 88.4 (88.1, 88.7) 45.1 (43.8, 46.4) 66.5 (65.5, 67.5) 0.717 (0.710, 0.723)

  NARU Triage Sieve 43.0 (41.7, 44.3) 88.3 (88.1, 88.6) 57.0 (55.7, 58.3) 71.8 (70.9, 72.8) 0.657 (0.650, 0.663)

  RAMP 37.1 (35.9, 38.4) 94.6 (94.5, 94.8) 62.9 (61.6, 64.1) 57.5 (56.1, 58.9) 0.659 (0.653, 0.665)

Models selected as candidates for novel primary and secondary triage tools

  Primary triage tool candidate (decision tree) 73.0 (71.8, 74.2) 73.9 (73.5, 74.3) 27.0 (25.8, 28.2) 77.0 (76.4, 77.7) 0.782 (0.775, 0.789)

  Secondary triage tool candidate (XGB) 77.9 (76.8, 79.0) 73.1 (72.7, 73.5) 22.1 (21.0, 23.2) 76.4 (75.8, 77.0) 0.817 (0.810, 0.824)

Values shown are percentages (except for AUC), accompanied by 95% CIs.
*The best performing model using each method is shown. Both machine learning models and the triage tools were evaluated using the same TARN population (internal testing dataset).
AUC, area under the receiver operating curve; BCD, Battlefield Casualty Drills (UK Military); MPTT- 24, Modified Physiological Triage Tool 24 (2017); NARU, National Ambulance Resilience Unit (current UK civilian triage 
tool); TARN, Trauma Audit and Research Network; XGB, eXtreme Gradient Boosting.

Figure 1 Performance of tool candidate models in the internal and 
external validation datasets compared with the Battlefield Casualty 
Drills (BCD) Triage Sieve (best performing existing tool) and the current 
UK tool, the National Ambulance Resilience Unit (NARU) Triage Sieve. 
Additionally, the performance of an XGB model using all 13 input 
variables is shown for comparison (see online supplemental material for 
more details). JTTR, Joint Theatre Trauma Registry; TARN, Trauma Audit 
and Research Network; XGB, eXtreme Gradient Boosting.
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DISCUSSION
We have developed MI triage tools based on machine learning 
models that outperform 10 existing international triage tools 
in predicting the need for time- critical interventions (P1 status) 
among adults. The best existing primary triage tool, the BCD 
Triage Sieve, demonstrated sensitivity of 68.2% and overtriage 
of 80.8% (AUC 0.688), while the selected machine learning 
primary triage tool achieved a sensitivity of 73% and over-
triage of 77% (AUC 0.782). The model selected as a secondary 

MI triage tool achieved sensitivity of 77.9% and an overtriage 
rate of 76.4% (AUC 0.817). When externally validated, the 
secondary tool demonstrated excellent performance with sensi-
tivity of 97.6% and overtriage of 57.5% (AUC 0.778). External 
validation of the primary tool was precluded by a lack of GCS 
subcomponent data within the UK combat casualty registry. A 
novel aspect of this exercise was including anatomical assessment 
of injuries as part of an MI triage tool and presence of a chest 
injury was found to be one of the most important variables. Our 
models serve as evidence- based alternatives to existing tools.

The models proposed are based entirely on qualitative assess-
ments. Eliminating arithmetic calculations (RR and HR) from 
triage under challenging circumstances has been advocated by 
expert consensus.19 The proposed four- variable secondary tool 
may also reduce triage time relative to the seven- step NARU 
and BCD Triage Sieve tools. In addition, decision support using 
portable device applications has established utility in the MI 
setting, exemplified by CitizenAID, which enables mutual aid by 
members of the general public.30 Triage using a portable device 
could help to minimise interuser variability and human error.

Breathing status was the most important predictor of P1 status; 
this constitutes the opening step in several existing tools.6 Our 
study concurs with the findings of Wallis and Carley, who deter-
mined that the GCS Motor component was strongly predictive 
of P1 status.31 The finding that age >65 years is negatively asso-
ciated with P1 status may be confounded by the predominantly 

Figure 2 (A) Mean absolute Shapley value for the top 10 predictors. This is followed by the (B) Shapley values for the top six most important 
features (Shapley values are shown on the x axis, feature values are shown on the y axis). Large, positive Shapley values represent a greater 
contribution to the likelihood of P1 status. Negative Shapley values represent contributions to non- P1 status. Age over 65 years was found to be 
negatively predictive of P1 status. GCS Motor, motor subcomponent of the GCS; P1, priority 1.

Figure 3 AIS, Abbreviated Injury Severity; P1, priority 1.

 on F
ebruary 24, 2024 by guest. P

rotected by copyright.
http://em

j.bm
j.com

/
E

m
erg M

ed J: first published as 10.1136/em
erm

ed-2022-212440 on 26 S
eptem

ber 2023. D
ow

nloaded from
 

http://emj.bmj.com/


182 Xu Y, et al. Emerg Med J 2024;41:176–183. doi:10.1136/emermed-2022-212440

Original research

low- risk injury mechanism (low- level falls) in elders in our 
training dataset: hence, these patients are a poor surrogate for 
elders injured in an MI. Further work is required to develop 
effective trauma triage tools for elders, who differ in their phys-
iology, and in whom presence of comorbidities and/or frailty is 
an important determinant of outcome.13 Penetrating mechanism 
was also an important predictor of P1 status: MIs involving 
penetrating trauma have historically yielded larger proportions 
of P1 patients.5

A key strength of this study is use of a large sample of injured 
patients using prospective data collected by trained TARN 
coordinators.17 The primary outcome measure chosen for this 
study is the only validated outcome measure for MI triage tool 
performance.10 A further strength is that the proposed secondary 
triage tool has undergone blinded, external validation using 
the UK military’s JTTR database. This provides estimates of 
the model’s predictive capability overall, but importantly, also 
among patients with blast and penetrating mechanisms (under- 
represented in the TARN dataset) typical of terrorist attacks, 
the prevalent type of UK MI in recent years.1 Selection of an 
XGB model as a secondary tool, which can make predictions in 
the context of some missing data, has avoided the possible bias 
which can result from multiple imputation. Importantly, based 
on the TARN patients included in our study, both novel tools 
would generate proportions of P1 casualties that fall within UK 
national mass casualty planning assumptions.32 Notably, no UK 
or international guidance exists to define acceptable rates of 
undertriage and overtriage in the major incident setting.

Limitations of this study include use of retrospectively calcu-
lated AIS scores (incorporating CT and operative findings) during 
modelling in place of documented prehospital clinical assess-
ment. While paramedics routinely conduct anatomical assess-
ments during triage in singly injured patients using existing field 
triage tools and clinical assessment has proven effective in ruling 
out clinically significant chest injuries, some overtriage can be 
expected.12 33 Clinicians have performed improvised anatomical- 
based secondary triage following two mass shooting incidents, 
with a subsequent low rate of undertriage.5 Another limitation is 

the use of singly injured patients within a civilian trauma registry 
as surrogates for those injured in an MI; outcomes in the MI 
setting may be worse. Our models focus on predicting P1 status 
only: however, these patients are at greatest risk of preventable 
death. In current UK practice, a small proportion of P1 patients 
may be subsequently assigned P4/expectant status by a senior 
clinician at scene; this contrasts with practice elsewhere, where 
triage tools fulfil this role (eg, Australian CareFlight and US 
START tools).6 32 Exclusion of P4 patients (<1% of the sample 
size) from the modelling process is unlikely to have impacted 
significantly on study findings. Application of models to the first 
recorded hospital physiology in JTTR may be biased by prehos-
pital interventions; however, collection of prehospital physiolog-
ical data during combat is particularly challenging.28 The results 
of external validation in a military trauma population may have 
limited generalisability to the civilian setting. Further valida-
tion of our models in a true MI dataset or a prospective UK 
civilian database, including blast/penetrating trauma and burns, 
would provide further assurance of the models’ performance. A 
further limitation is that we were unable to externally validate 
our proposed primary tool due to the paucity of prehospital vital 
signs (GCS) documented in the JTTR dataset.

In conclusion, using machine learning, we developed primary 
and secondary triage tools which differ from prior tools by incor-
porating anatomical assessment and have superior sensitivity 
and more favourable overtriage rates. Although the primary 
tool requires external validation among patients with injuries 
similar to those sustained in MI, the proposed secondary triage 
tool, which was externally validated, may be suitable for use in 
civilian hospital reception areas and in the military evacuation 
chain during MIs prior to or in conjunction with senior clinician 
triage using a portable device.
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Figure 4 An interactive online application is demonstrated at https://ywxtriageapp.shinyapps.io/mltriage/. AIS, Abbreviated Injury Severity; GCS 
Motor, motor subcomponent of the GCS; ML, machine learning; P1, priority 1.
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Triage in major incidents: development and external validation of novel machine-

learning derived primary and secondary triage tools 

Supplementary material 

Additional details of machine learning modelling 

An overview of study methodology and data processing is presented in Supplementary Figure 1, with a more 

detailed model development and selection strategy outlined in Supplementary Figure 2.   

For the decision tree (also known as Recursive Partitioning And Regression Tree, RPART) method, a limit of a 

maximum tree depth of 3 was imposed for ease of interpretation.To guard against overfitting, we chose to tune 

the cost complexity and the tree depth parameter of the decision tree model. Effectively, the tree depth (distance 

from the root to a terminal node) represents the number of measurables needed in order to determine a triage 

category. However, we note that unlike triage tools conceived by human experts, it is possible to have the same 

variable used more than once to split the nodes, if the reuse of variables reduces classification error. A deep tree 

with many splits tends to overfit the data, and makes it difficult to adapt the model to a tool that can be 

implemented in practice. 

Both random forest (RF) and gradient boosted tree (XGB) are popular machine learning algorithms with strong 

predictive power. RF is based on averaging an ensemble of trees and the idea of bagging, which lowers the 

prediction variance. Furthermore, instead of growing each tree using all variables, it randomly chooses a subset 

of variables at each split of the node in the tree, thereby forcing it to learn through all subsets of available 

variables. For XGB, the prediction target is estimated by sum-of-trees, and the model is built by successively 

fitting each tree to the residue of previously fitted trees with no single tree dominating the prediction, while 

regularizing the fit through multiplication by a scaling factor known as learning rate. In short, XGB estimates 

the target function by a sum of trees each of which explains a small and different portion of the target and no 

single tree dominates the prediction. 

For the L1-regularized logistic regression model, the penalty parameter, specifying the amount of regularization, 

was tuned. We add a regularization term in logistic regression so that the solution is well-defined even if the 

data are perfectly linearly separable. 

Initially, models were trained using all 13 input variables (summarised in Supplementary Table 1): the resulting 

models would be too complex for practical application as tools, but nonetheless act as a useful comparator for 

model performance (see Supplementary Figure 2 detailing the model building and selection strategy).  The 

optimal hyperparameters that yield the best AUC were selected. For decision tree and logistic regression, a grid 

search was used; whereas for RF and XGB, random sampling of points in the parameter space was used to try to 

cover the space as uniformly as possible. For each model, having selected the hyperparameters, a final model 

was trained on the whole training set (70% of TARN data) and then evaluated on the remaining 30% hold-out 

data.  Models developed using all 13 input variables yielded similar AUC values (range 0.862-0.868, see 

Supplementary Table 2), except for the decision tree model (AUC 0.782), which also exhibited lower specificity 

and higher over-triage than the other ML models. All models employing 13 variables attained sensitivity above 

72%, exceeding that of the BCD Triage Sieve. Performance characteristics of models employing all 13 input 

variables were further evaluated by age subgroup (16-64 years and 65+ years (Supplementary Table 2). We note 

that for ML models evaluated on the 65+ group, while there is slight decrease in AUC compared to the 16-64 

group, sensitivity is much worse, except for the decision tree model which has the best sensitivity (66.3%) 

among all models and triage tools. However, the price of this relatively high sensitivity of decision tree is a high 

over-triage rate (87.2%). 

Existing triage tools were applied to the internal validation dataset to act as comparators to the models proposed 

as novel triage tools. To overcome the over-representation of elders (65+ years) within the TARN database (see 

Manuscript, Table 1), who also differ in their physiology to younger adults, tool performance was additionally 

tested in subgroups by age (16-64 years and 65+ years), as shown in Supplementary Table 3. Existing tools 

demonstrated lower sensitivity and higher over-triage rates amongst elders compared to younger adults (16-64 

years).   

We sought to combine the individual models in a weighted fashion by training a super model [1], in which 

weights are assigned to models based on their predictive power and the final predictions are driven by models 

with high weights. For the super model, a binomial likelihood maximization using the BFGS quasi-Newton 

optimization method was used, the model was fitted using the “SuperLearner” R package [2]. The weights are 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Emerg Med J

 doi: 10.1136/emermed-2022-212440–8.:10 2023;Emerg Med J, et al. Xu Y



normalized and sum to one. The super model assigned coefficients (weights) to each individual model, along 

with the minimized risks. We note that the decision tree model was in fact excluded from the super model, since 

it has a weight of zero (risk 0.525). The XGB model has highest weight of 0.717 (risk 0.442). Random forest 

had the second highest weight (0.241, risk 0.454) whilst logistic regression had a low contribution to the overall 

super model (coefficient 0.041, risk 0.451). The AUC for the super model is 0.868.  

The importance of individual features (input parameters) was also estimated using the XGB method (see 

Supplementary Figure 3). This method yielded similar rankings to those generated by the TREEShap method: 

breathing status contributed 36% of the total gain, followed by presence of chest injury (13%) and GCS verbal 

score (11%).   

Secondary candidate models were subsequently evaluated on a smaller subset of JTTR patients (n=5455) for 

which there is complete data available to test the performance of the BCD Triage Sieve, thereby facilitating 

direct comparison (Supplementary Table 6). The secondary tool candidate (XGB 37) attained comparatively 

high sensitivity (97.3% vs 80.2%), although this was associated with an 11.1% increase in over-triage (58.5% vs 

47.4%).  

 

  

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Emerg Med J

 doi: 10.1136/emermed-2022-212440–8.:10 2023;Emerg Med J, et al. Xu Y



Supplementary Figure 1:  Overview of study methodology and data processing 

 

Ledger:  Abbreviations: TARN= Trauma Audit and Research Network; JTTR= Joint Theatre Trauma Registry; 

SBP=Systolic Blood Pressure; XOR=Exclusive/or; LR=Logistic Regression; RF=Random Forest; DT=Decision 

Tree; XGB= Extreme Gradient Boost; RESPR=Respiratory rate 
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Supplementary Figure 2: Model building and selection strategy 

 Models developed utilising all 13 input variables  Super model developed 

 

("Full models" using each of XGB, RPART, LR and RF 

methods) 
 

(See Supplementary Material) 

 

 

  

 

Modelling process repeated using all combinations of 3 to 7 

input variables   

 in line with existing triage tools (456 "Reduced models")   

 

 

  

 Models applied to TARN internal test dataset 
 

Existing tools applied as 

comparators  

(best performer identified as 

the BCD Triage Sieve) 

    

 

 

  

 

Shortlist of tools with maximal sensitivity in identifying P1 

patients, favourable over-triage rate and AUC across adults of 

all ages as well as age subgroups, using the minimal number 

of input variables   

 
 

  
PRIMARY TRIAGE 

TOOL CANDIDATES  

SECONDARY TRIAGE 

TOOL CANDIDATES  

5 RPART shortlisted  29 XGB models shortlisted  

1 selected  1 selected  
 

 

 

 
PRIMARY TRIAGE 

TOOL CANDIDATE  

SECONDARY TRIAGE 

TOOL CANDIDATE  

 
 

  

 External validation of selected models using JTTR   

Ledger: XGB=eXtreme Gradient Boosting, RPART=Recursive Partitioning And Regression Trees (i.e. Decision 

Tree), LR=Logistic regression and RF=random forest, TARN=Trauma Audit and Research Network Registry, 

JTTR=Joint Theatre Trauma Registry, BCD Triage Sieve=Battlefield Casualty Drills Triage Sieve. 

 

Supplementary Figure 3: Feature importance plot for the XGB model 

 

Ledger: Importance of top 10 predictors for the XGB model as measured by the fractional contribution of each 

feature to the model based on the total gain of each feature’s splits. High values represent more predictive 

features. Respiratory rate is measured in breaths per minute, Systolic blood pressure is measured in mmHg. 

Presence of chest and head injuries are denoted by a positive Abbreviated Injury Severity score. 
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Supplementary Figure 4: Calibration plot for models selected as candidate primary and secondary triage 

tools 

 

Ledger: calibration plot for the candidate primary (left) and secondary (right) ML models, evaluated using 

JTTR data.  

The calibration curve was estimated by natural splines using the R package gbm [3]. 95% confidence intervals 

covering 2 standard errors are demonstrated (blue).  

For perfect calibration, the calibration curve would align with the 45-degree line (red). It can be seen that the 

secondary tool (XGB model) over-predicted risk, since the predicted P1 probabilities were greater than the 

observed probabilities across all patients. This is expected as the secondary tool candidate (XGB model) had 

high sensitivity but low specificity. In contrast, the calibration curve of the primary tool candidate (decision tree 

or rpart model) was smoother and the over-prediction was less extreme than XGB, reflecting the fact that the 

decision tree model had lower sensitivity and higher specificity than XGB. 

 

Supplementary Table 1: Clinical parameters included as input variables for modelling  
Input variables 

Physiological 

parameters* 

Heart rate (beats per minute),  

Respiratory rate (breaths per minute)  

Systolic blood pressure (mmHg) 

Ability to breathe spontaneously** 

GCS Verbal component 

GCS Motor component 

GCS Eyes component 

Shock index*** 

Anatomical parameters Presence (AIS>0) or absence (AIS=0) of injury in the 

following anatomical regions: 

Head 

Face 

Thorax 

Limb  

Age Age 65 and over (Binary – Yes or No) 

Injury Mechanism* Blunt or penetrating injury 

Ledger: GCS=Glasgow Coma Score, AIS=Abbreviated Injury Score. *First recorded pre-hospital physiological 

parameters and injury mechanism were utilised. **All patients who underwent an advanced airway intervention 

in the pre-hospital environment were assumed to be unable to breathe. ***Shock index=heart rate/systolic blood 

pressure.  
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Supplementary Table 2:  Performance of machine learning models utilising all 13 input variables in 

predicting P1 status amongst patients in the internal (TARN) testing dataset 

  Method Sensitivity Specificity Under-triage Over-triage AUC 

All adults ml_rpart 73.0 [71.8, 74.2] 73.9 [73.5, 74.3] 27.0 [25.8, 28.2] 77.0 [76.4, 77.7] 0.782 [0.775, 0.789] 

(16+ years) ml_rf 72.6 [71.4, 73.8] 86.0 [85.7, 86.3] 27.4 [26.2, 28.6] 64.5 [63.6, 65.4] 0.867 [0.861, 0.873] 

  ml_xgb 72.7 [71.5, 73.9] 85.9 [85.6, 86.2] 27.3 [26.1, 28.5] 64.6 [63.7, 65.5] 0.868 [0.862, 0.874] 

  ml_lr 72.2 [71.0, 73.4] 85.2 [84.9, 85.5] 27.8 [26.6, 29.0] 65.8 [64.9, 66.6] 0.862 [0.857, 0.868] 

16-64 years ml_rpart 76.0 [74.6, 77.3] 71.8 [71.2, 72.4] 24.0 [22.7, 25.4] 66.8 [65.8, 67.8] 0.794 [0.786, 0.803] 

subgroup ml_rf 81.9 [80.7, 83.1] 76.1 [75.5, 76.7] 18.1 [16.9, 19.3] 61.2 [60.2, 62.3] 0.877 [0.871, 0.884] 

  ml_xgb 82.3 [81.0, 83.5] 75.7 [75.2, 76.3] 17.7 [16.5, 19.0] 61.5 [60.4, 62.6] 0.879 [0.872, 0.885] 

  ml_lr 82.5 [81.2, 83.7] 74.7 [74.1, 75.3] 17.5 [16.3, 18.8] 62.5 [61.4, 63.5] 0.873 [0.866, 0.879] 

65+ years ml_rpart 66.3 [64.0, 68.6] 75.3 [74.8, 75.8] 33.7 [31.4, 36.0] 87.2 [86.5, 87.9] 0.746 [0.733, 0.759] 

subgroup ml_rf 51.7 [49.3, 54.1] 92.5 [92.2, 92.8] 48.3 [45.9, 50.7] 72.7 [71.1, 74.2] 0.806 [0.793, 0.818] 

  ml_xgb 51.3 [48.9, 53.6] 92.6 [92.3, 92.9] 48.7 [46.4, 51.1] 72.5 [70.9, 74.0] 0.807 [0.795, 0.820] 

  ml_lr 49.2 [46.8, 51.5] 92.2 [91.9, 92.5] 50.8 [48.5, 53.2] 74.3 [72.8, 75.8] 0.800 [0.787, 0.812] 

 

Ledger: Results shown are percentages (except for AUC). The best performing model amongst all adults for 

each method is shown, including performance by age subgroup. Abbreviations: ml=machine learning, rpart= 

decision tree, rf=random forest, xgb= extreme gradient boosting, lr=logistic regression. 
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Supplementary Table 3:  Performance characteristics of existing triage tools when applied to the internal 

validation dataset 

Tool Sensitivity Specificity Under-triage Over-triage AUC 

All adults (16+ 

years)           

BCD Triage Sieve 68.2 [66.9, 69.4] 69.5 [69.1, 69.9] 31.8 [30.6, 33.1] 80.8 [80.2, 81.3] 0.688 [0.682, 0.695] 

CareFlight 39.9 [38.6, 41.2] 94.5 [94.3, 94.7] 60.1 [58.8, 61.4] 56.4 [55.0, 57.8] 0.672 [0.666, 0.679] 

JumpSTART 42.5 [41.2, 43.8] 92.1 [91.8, 92.3] 57.5 [56.2, 58.8] 63.7 [62.5, 64.9] 0.673 [0.666, 0.679] 

MIMMS Triage 

Sieve 40.5 [39.2, 41.8] 92.0 [91.8, 92.3] 59.5 [58.2, 60.8] 64.9 [63.7, 66.1] 0.663 [0.656, 0.669] 

MPTT 50.5 [49.2, 51.8] 62.4 [62.0, 62.8] 49.5 [48.2, 50.8] 87.5 [87.1, 87.9] 0.565 [0.558, 0.571] 

MPTT-24 48.4 [47.1, 49.7] 66.4 [66.0, 66.8] 51.6 [50.3, 52.9] 86.7 [86.2, 87.2] 0.574 [0.567, 0.581] 

MSTART 54.9 [53.6, 56.2] 88.4 [88.1, 88.7] 45.1 [43.8, 46.4] 66.5 [65.5, 67.5] 0.717 [0.710, 0.723] 

NARU Triage Sieve 43.0 [41.7, 44.3] 88.3 [88.1, 88.6] 57.0 [55.7, 58.3] 71.8 [70.9, 72.8] 0.657 [0.650, 0.663] 

RAMP 37.1 [35.9, 38.4] 94.6 [94.5, 94.8] 62.9 [61.6, 64.1] 57.5 [56.1, 58.9] 0.659 [0.653, 0.665] 

START 51.8 [50.5, 53.2] 90.0 [89.7, 90.2] 48.2 [46.8, 49.5] 64.5 [63.5, 65.6] 0.709 [0.702, 0.716] 

16-64 years 

subgroup           

BCD Triage Sieve 72.7 [71.2, 74.1] 64.8 [64.2, 65.5] 27.3 [25.9, 28.8] 72.4 [71.5, 73.3] 0.687 [0.680, 0.695] 

CareFlight 42.7 [41.1, 44.3] 94.3 [94.0, 94.6] 57.3 [55.7, 58.9] 42.0 [40.2, 43.8] 0.685 [0.677, 0.693] 

JumpSTART 45.5 [43.9, 47.0] 91.2 [90.9, 91.6] 54.5 [53.0, 56.1] 51.1 [49.4, 52.7] 0.684 [0.675, 0.692] 

MIMMS Triage 

Sieve 43.0 [41.4, 44.6] 92.6 [92.2, 93.0] 57.0 [55.4, 58.6] 48.2 [46.5, 50.0] 0.678 [0.670, 0.686] 

MPTT 52.3 [50.7, 53.9] 57.1 [56.4, 57.8] 47.7 [46.1, 49.3] 81.6 [80.9, 82.4] 0.547 [0.538, 0.555] 

MPTT-24 50.5 [48.9, 52.1] 61.6 [60.9, 62.2] 49.5 [47.9, 51.1] 80.5 [79.7, 81.3] 0.560 [0.552, 0.569] 

MSTART 57.6 [56.1, 59.2] 88.9 [88.5, 89.3] 42.4 [40.8, 43.9] 51.0 [49.6, 52.5] 0.733 [0.725, 0.741] 

NARU Triage Sieve 47.1 [45.5, 48.7] 87.5 [87.0, 87.9] 52.9 [51.3, 54.5] 59.0 [57.6, 60.5] 0.673 [0.665, 0.681] 

RAMP 39.6 [38.1, 41.2] 94.4 [94.1, 94.7] 60.4 [58.8, 61.9] 43.4 [41.5, 45.3] 0.670 [0.662, 0.678] 

START 54.4 [52.8, 55.9] 90.7 [90.3, 91.1] 45.6 [44.1, 47.2] 48.1 [46.5, 49.6] 0.725 [0.717, 0.733] 

65+ years subgroup           

BCD Triage Sieve 58.1 [55.7, 60.4] 72.6 [72.1, 73.1] 41.9 [39.6, 44.3] 89.6 [89.0, 90.2] 0.653 [0.642, 0.665] 

CareFlight 33.7 [31.4, 36.0] 94.6 [94.4, 94.9] 66.3 [64.0, 68.6] 74.5 [72.6, 76.3] 0.642 [0.630, 0.653] 

JumpSTART 35.8 [33.5, 38.1] 92.6 [92.3, 92.9] 64.2 [61.9, 66.5] 79.1 [77.6, 80.6] 0.642 [0.630, 0.653] 

MIMMS Triage 

Sieve 34.9 [32.6, 37.2] 91.7 [91.3, 92.0] 65.1 [62.8, 67.4] 81.4 [80.0, 82.8] 0.633 [0.621, 0.644] 

MPTT 46.5 [44.1, 48.9] 65.9 [65.4, 66.5] 53.5 [51.1, 55.9] 93.1 [92.6, 93.5] 0.562 [0.550, 0.574] 

MPTT-24 43.7 [41.3, 46.1] 69.6 [69.1, 70.1] 56.3 [53.9, 58.7] 92.7 [92.2, 93.2] 0.567 [0.555, 0.579] 

MSTART 48.9 [46.5, 51.3] 88.0 [87.7, 88.4] 51.1 [48.7, 53.5] 81.8 [80.6, 82.9] 0.685 [0.673, 0.697] 

NARU Triage Sieve 33.7 [31.5, 36.0] 88.9 [88.6, 89.3] 66.3 [64.0, 68.5] 85.8 [84.7, 86.8] 0.613 [0.602, 0.625] 

RAMP 31.6 [29.4, 33.8] 94.8 [94.6, 95.1] 68.4 [66.2, 70.6] 75.1 [73.2, 76.9] 0.632 [0.621, 0.643] 

START 46.2 [43.8, 48.6] 89.5 [89.1, 89.8] 53.8 [51.4, 56.2] 80.7 [79.5, 81.9] 0.678 [0.666, 0.690] 

 

Ledger: BCD Triage Sieve=Battlefield Casualty Drills Triage Sieve (UK Military), CareFlight (Australia), 

JumpSTART (US paediatric triage tool), MIMMS Triage Sieve=Major Incident Medical Management and 

Support Triage Sieve, MPTT=Modified Physiological Triage Tool (tool modelled in UK military casualties), 

MPTT-24 (modification of MPTT, 2017), START=Simple Triage and Rapid Treatment (US adult tool), 

MSTART=modified START, NARU Triage Sieve=National Ambulance Resilience Unit Triage Sieve (Current 

UK civilian tool), RAMP=Rapid Assessment of Mentation and Pulse (New York Fire Department). 

 

Supplementary Tables 4A-C:  See landscape format document 
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Supplementary Table 5: External validation of shortlisted models and the Battlefield Casualty Drills 

Triage Sieve (comparator) using the Joint Theatre Trauma Registry (n=5455) 

Method Sensitivity Specificity Under-triage Over-triage AUC 

Comparator (best existing 

tool):           

BCD Triage Sieve 0.802 [0.784, 0.819] 0.578 [0.561, 0.595] 0.198 [0.181, 0.216] 0.474 [0.456, 0.492] 0.690 [0.678, 0.702] 

Primary tool candidate 

models           

rpart_1 0.330 [0.310, 0.351] 0.892 [0.881, 0.902] 0.670 [0.649, 0.690] 0.360 [0.331, 0.390] 0.618 [0.606, 0.629] 

rpart_3 0.330 [0.310, 0.351] 0.892 [0.881, 0.902] 0.670 [0.649, 0.690] 0.360 [0.331, 0.390] 0.618 [0.607, 0.630] 

rpart_37 0.330 [0.310, 0.351] 0.892 [0.881, 0.902] 0.670 [0.649, 0.690] 0.360 [0.331, 0.390] 0.618 [0.607, 0.630] 

rpart_52 0.479 [0.457, 0.501] 0.752 [0.737, 0.766] 0.521 [0.499, 0.543] 0.470 [0.447, 0.494] 0.611 [0.598, 0.624] 

rpart_124 0.437 [0.415, 0.459] 0.879 [0.868, 0.890] 0.563 [0.541, 0.585] 0.322 [0.297, 0.348] 0.668 [0.656, 0.680] 

Secondary tool candidate 

models            

xgb_1 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.755 [0.743, 0.768] 

xgb_3 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.755 [0.743, 0.768] 

xgb_37 0.973 [0.964, 0.979] 0.199 [0.186, 0.213] 0.027 [0.021, 0.036] 0.585 [0.571, 0.599] 0.780 [0.768, 0.792] 

xgb_38 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.755 [0.743, 0.768] 

xgb_41 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.782 [0.769, 0.795] 

xgb_42 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.748 [0.734, 0.761] 

xgb_43 0.675 [0.654, 0.695] 0.791 [0.777, 0.805] 0.325 [0.305, 0.346] 0.347 [0.326, 0.367] 0.776 [0.762, 0.790] 

xgb_44 0.973 [0.964, 0.979] 0.199 [0.186, 0.213] 0.027 [0.021, 0.036] 0.585 [0.571, 0.599] 0.780 [0.768, 0.792] 

xgb_53 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.748 [0.734, 0.761] 

xgb_54 0.675 [0.654, 0.695] 0.791 [0.777, 0.805] 0.325 [0.305, 0.346] 0.347 [0.326, 0.367] 0.777 [0.763, 0.790] 

xgb_121 0.973 [0.964, 0.979] 0.199 [0.186, 0.213] 0.027 [0.021, 0.036] 0.585 [0.571, 0.599] 0.780 [0.768, 0.792] 

xgb_124 0.975 [0.966, 0.981] 0.174 [0.162, 0.187] 0.025 [0.019, 0.034] 0.592 [0.578, 0.606] 0.777 [0.764, 0.790] 

xgb_125 0.973 [0.964, 0.979] 0.199 [0.186, 0.213] 0.027 [0.021, 0.036] 0.585 [0.571, 0.599] 0.778 [0.766, 0.790] 

xgb_130 0.667 [0.646, 0.688] 0.788 [0.774, 0.802] 0.333 [0.312, 0.354] 0.353 [0.332, 0.374] 0.748 [0.734, 0.761] 

xgb_131 0.674 [0.653, 0.695] 0.793 [0.779, 0.807] 0.326 [0.305, 0.347] 0.344 [0.324, 0.365] 0.774 [0.760, 0.788] 

xgb_141 0.676 [0.655, 0.696] 0.792 [0.778, 0.805] 0.324 [0.304, 0.345] 0.346 [0.325, 0.367] 0.768 [0.754, 0.782] 

xgb_154 0.965 [0.955, 0.972] 0.171 [0.159, 0.184] 0.035 [0.028, 0.045] 0.596 [0.582, 0.610] 0.695 [0.680, 0.709] 

xgb_165 0.684 [0.663, 0.704] 0.792 [0.778, 0.805] 0.316 [0.296, 0.337] 0.343 [0.323, 0.364] 0.788 [0.774, 0.801] 

xgb_166 0.676 [0.655, 0.696] 0.791 [0.777, 0.805] 0.324 [0.304, 0.345] 0.346 [0.326, 0.367] 0.770 [0.757, 0.784] 

xgb_250 0.973 [0.964, 0.979] 0.199 [0.186, 0.213] 0.027 [0.021, 0.036] 0.585 [0.571, 0.599] 0.781 [0.769, 0.794] 

xgb_251 0.972 [0.964, 0.979] 0.203 [0.190, 0.217] 0.028 [0.021, 0.036] 0.584 [0.570, 0.599] 0.792 [0.779, 0.804] 

xgb_270 0.722 [0.702, 0.742] 0.701 [0.685, 0.716] 0.278 [0.258, 0.298] 0.416 [0.396, 0.435] 0.785 [0.772, 0.798] 

xgb_271 0.670 [0.649, 0.691] 0.800 [0.786, 0.813] 0.330 [0.309, 0.351] 0.338 [0.318, 0.359] 0.770 [0.756, 0.784] 

xgb_289 0.971 [0.962, 0.977] 0.195 [0.182, 0.209] 0.029 [0.023, 0.038] 0.587 [0.573, 0.601] 0.778 [0.765, 0.791] 

xgb_311 0.721 [0.701, 0.741] 0.704 [0.689, 0.719] 0.279 [0.259, 0.299] 0.413 [0.393, 0.433] 0.781 [0.768, 0.795] 

xgb_380 0.971 [0.962, 0.977] 0.196 [0.183, 0.210] 0.029 [0.023, 0.038] 0.587 [0.573, 0.601] 0.795 [0.782, 0.807] 

xgb_392 0.976 [0.968, 0.982] 0.174 [0.162, 0.187] 0.024 [0.018, 0.032] 0.592 [0.578, 0.606] 0.800 [0.788, 0.812] 

xgb_402 0.709 [0.688, 0.729] 0.732 [0.717, 0.747] 0.291 [0.271, 0.312] 0.394 [0.374, 0.414] 0.783 [0.769, 0.796] 

xgb_417 0.976 [0.968, 0.982] 0.181 [0.168, 0.194] 0.024 [0.018, 0.032] 0.590 [0.576, 0.604] 0.799 [0.787, 0.812] 

 

Ledger: *this is a reduced JTTR dataset for which a complete set of physiological data exists for application of 

the BCD Triage Sieve (the best performing existing tool, selected as a comparator) can be applied.  To allow 

direct comparison, the models shortlisted as candidates for triage tools are applied to the reduced dataset.  

rpart=decision tree (Recursive Partitioning And Regression Trees), xgb= extreme gradient boosting. 
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Supplementary Table 4A: Models shortlisted as candidates for primary and secondary tools:  Description of model variables 

Task 

ID Model variables Variables 

  Candidate primary tools (Decision Tree (RPART) models)   

1 Breathing status at scene|Chest injury present|GCS Motor Score 3 

3 Breathing status at scene|Chest injury present|GCS Verbal Score 3 

37 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type 4 

52 Breathing status at scene|Chest injury present|GCS Verbal Score|Respiratory rate 4 

124 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|Respiratory rate 5 

      

  Candidate secondary tools (Extreme Gradient Boosting (XGB) models)   

1 Breathing status at scene|Chest injury present|GCS Motor Score 3 

3 Breathing status at scene|Chest injury present|GCS Verbal Score 3 

37 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type 4 

38 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score 4 

41 Breathing status at scene|Chest injury present|GCS Motor Score|Respiratory rate 4 

42 Breathing status at scene|Chest injury present|GCS Motor Score|Head injury present 4 

43 Breathing status at scene|Chest injury present|GCS Motor Score|Systolic blood pressure 4 

44 Breathing status at scene|Chest injury present|Injury type|GCS Verbal Score 4 

53 Breathing status at scene|Chest injury present|GCS Verbal Score|Head injury present 4 

54 Breathing status at scene|Chest injury present|GCS Verbal Score|Systolic blood pressure 4 

121 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|GCS Verbal Score 5 

124 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|Respiratory rate 5 

125 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|Head injury present 5 

130 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score|Head injury present 5 

131 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score|Systolic blood pressure 5 

141 Breathing status at scene|Chest injury present|GCS Motor Score|Head injury present|Systolic blood pressure 5 

154 Breathing status at scene|Chest injury present|Injury type|Respiratory rate|Head injury present 5 

165 Breathing status at scene|Chest injury present|GCS Verbal Score|Respiratory rate|Systolic blood pressure 5 

166 Breathing status at scene|Chest injury present|GCS Verbal Score|Head injury present|Systolic blood pressure 5 

250 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|GCS Verbal Score|Head injury present 6 

251 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|GCS Verbal Score|Systolic blood pressure 6 

270 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score|Respiratory rate|Systolic blood pressure 6 

271 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score|Head injury present|Systolic blood pressure 6 

289 Breathing status at scene|Chest injury present|Injury type|GCS Verbal Score|Respiratory rate|Head injury present 6 

311 Breathing status at scene|Chest injury present|GCS Verbal Score|Respiratory rate|Head injury present|Systolic blood pressure 6 

380 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|GCS Verbal Score|Respiratory rate|Head injury present 7 

392 Breathing status at scene|Chest injury present|GCS Motor Score|Injury type|Respiratory rate|Head injury present|Systolic blood pressure 7 

402 Breathing status at scene|Chest injury present|GCS Motor Score|GCS Verbal Score|Respiratory rate|Head injury present|Systolic blood pressure 7 

417 Breathing status at scene|Chest injury present|Injury type|GCS Verbal Score|Respiratory rate|Head injury present|Systolic blood pressure 7 
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Supplementary Table 4B: Performance characteristics of models shortlisted as primary and secondary tool candidates 

Ledger:  Values shown are percentages (except AUC), accompanied by 95% confidence intervals·   rpart=Decision tree, XGB=eXtreme Gradient Boosting 

Task ID 

Internal validation using TARN testing dataset (all adult patients) External validation in JTTR (n=5956) 

Sensitivity Specificity Under-triage Over-triage AUC Sensitivity Specificity Under-triage Over-triage AUC 

RPART:                

1 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·772 [0·765, 0·779] 34·0 [32·1, 36·0] 89·0 [87·9, 90·0] 66·0 [64·0, 67·9] 34·4 [31·7, 37·2] 0·622 [0·611, 0·633] 

3 72·3 [71·1, 73·5] 74·5 [74·1, 74·8] 27·7 [26·5, 28·9] 76·9 [76·2, 77·5] 0·775 [0·768, 0·782] 34·0 [32·1, 36·0] 89·0 [87·9, 90·0] 66·0 [64·0, 67·9] 34·4 [31·7, 37·2] 0·623 [0·612, 0·634] 

37 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·782 [0·775, 0·789] 49·8 [47·7, 51·9] 74·5 [73·0, 75·9] 50·2 [48·1, 52·3] 45·4 [43·3, 47·6] 0·616 [0·604, 0·629] 

52 72·3 [71·1, 73·5] 74·5 [74·1, 74·8] 27·7 [26·5, 28·9] 76·9 [76·2, 77·5] 0·780 [0·773, 0·787] 34·0 [32·1, 36·0] 89·0 [87·9, 90·0] 66·0 [64·0, 67·9] 34·4 [31·7, 37·2] 0·623 [0·612, 0·634] 

124 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·777 [0·770, 0·783] 46·1 [44·0, 48·2] 86·3 [85·2, 87·4] 53·9 [51·8, 56·0] 32·5 [30·2, 34·9] 0·671 [0·659, 0·683] 

                           

 XGB:                          

1 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·783 [0·776, 0·790] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·754 [0·742, 0·766] 

3 72·3 [71·1, 73·5] 74·5 [74·1, 74·8] 27·7 [26·5, 28·9] 76·9 [76·2, 77·5] 0·796 [0·789, 0·803] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·754 [0·742, 0·766] 

37 77·9 [76·8, 79·0] 73·1 [72·7, 73·5] 22·1 [21·0, 23·2] 76·4 [75·8, 77·0] 0·817 [0·810, 0·824] 97·6 [96·8, 98·2] 18·6 [17·4, 19·9] 2·4 [1·8, 3·2] 57·5 [56·2, 58·9] 0·778 [0·766, 0·790] 

38 73·8 [72·6, 75·0] 73·6 [73·2, 73·9] 26·2 [25·0, 27·4] 77·1 [76·5, 77·7] 0·798 [0·792, 0·805] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·754 [0·742, 0·766] 

41 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·808 [0·801, 0·815] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·779 [0·767, 0·792] 

42 73·0 [71·8, 74·2] 73·9 [73·5, 74·3] 27·0 [25·8, 28·2] 77·0 [76·4, 77·7] 0·798 [0·791, 0·805] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·749 [0·736, 0·762] 

43 70·0 [68·7, 71·2] 78·5 [78·2, 78·9] 30·0 [28·8, 31·3] 74·3 [73·6, 75·0] 0·809 [0·802, 0·816] 71·2 [69·3, 73·1] 74·0 [72·5, 75·4] 28·8 [26·9, 30·7] 37·2 [35·4, 39·1] 0·775 [0·762, 0·788] 

44 77·3 [76·2, 78·4] 73·6 [73·3, 74·0] 22·7 [21·6, 23·8] 76·2 [75·6, 76·8] 0·830 [0·824, 0·837] 97·6 [96·8, 98·2] 18·6 [17·4, 19·9] 2·4 [1·8, 3·2] 57·5 [56·2, 58·9] 0·778 [0·766, 0·790] 

53 72·3 [71·1, 73·5] 74·5 [74·1, 74·8] 27·7 [26·5, 28·9] 76·9 [76·2, 77·5] 0·802 [0·795, 0·809] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·749 [0·736, 0·762] 

54 70·7 [69·5, 71·9] 77·7 [77·4, 78·1] 29·3 [28·1, 30·5] 74·7 [74·0, 75·4] 0·816 [0·810, 0·823] 71·2 [69·3, 73·1] 74·0 [72·5, 75·4] 28·8 [26·9, 30·7] 37·2 [35·4, 39·1] 0·776 [0·763, 0·789] 

121 78·7 [77·6, 79·8] 72·7 [72·4, 73·1] 21·3 [20·2, 22·4] 76·5 [75·9, 77·1] 0·833 [0·827, 0·839] 97·6 [96·8, 98·2] 18·6 [17·4, 19·9] 2·4 [1·8, 3·2] 57·5 [56·2, 58·9] 0·778 [0·766, 0·790] 

124 71·8 [70·6, 73·0] 81·9 [81·6, 82·2] 28·2 [27·0, 29·4] 70·3 [69·5, 71·1] 0·834 [0·827, 0·841] 97·8 [97·0, 98·3] 16·3 [15·1, 17·5] 2·2 [1·7, 3·0] 58·2 [56·8, 59·5] 0·775 [0·763, 0·787] 

125 77·6 [76·5, 78·7] 73·6 [73·2, 74·0] 22·4 [21·3, 23·5] 76·2 [75·5, 76·8] 0·836 [0·829, 0·842] 97·6 [96·8, 98·2] 18·6 [17·4, 19·9] 2·4 [1·8, 3·2] 57·5 [56·2, 58·9] 0·778 [0·766, 0·790] 

130 73·8 [72·6, 74·9] 73·6 [73·2, 74·0] 26·2 [25·1, 27·4] 77·1 [76·5, 77·7] 0·804 [0·797, 0·811] 70·5 [68·6, 72·4] 73·7 [72·2, 75·1] 29·5 [27·6, 31·4] 37·7 [35·9, 39·6] 0·749 [0·736, 0·762] 

131 71·3 [70·1, 72·5] 77·7 [77·4, 78·1] 28·7 [27·5, 29·9] 74·6 [73·9, 75·3] 0·819 [0·812, 0·826] 71·2 [69·3, 73·0] 74·2 [72·7, 75·6] 28·8 [27·0, 30·7] 37·1 [35·2, 39·0] 0·771 [0·758, 0·783] 

141 71·0 [69·8, 72·2] 77·9 [77·5, 78·2] 29·0 [27·8, 30·2] 74·6 [73·9, 75·2] 0·819 [0·813, 0·826] 71·3 [69·4, 73·2] 74·0 [72·6, 75·4] 28·7 [26·8, 30·6] 37·2 [35·3, 39·1] 0·768 [0·755, 0·781] 

154 71·3 [70·1, 72·5] 78·0 [77·7, 78·4] 28·7 [27·5, 29·9] 74·4 [73·7, 75·0] 0·829 [0·823, 0·835] 96·7 [95·9, 97·4] 17·1 [15·9, 18·4] 3·3 [2·6, 4·1] 58·2 [56·8, 59·5] 0·702 [0·688, 0·715] 

165 68·7 [67·4, 69·9] 81·7 [81·3, 82·0] 31·3 [30·1, 32·6] 71·5 [70·7, 72·3] 0·826 [0·820, 0·833] 72·0 [70·1, 73·9] 74·0 [72·6, 75·4] 28·0 [26·1, 29·9] 36·9 [35·1, 38·8] 0·784 [0·772, 0·797] 

166 71·9 [70·7, 73·1] 76·2 [75·9, 76·6] 28·1 [26·9, 29·3] 75·7 [75·0, 76·3] 0·822 [0·815, 0·828] 71·3 [69·4, 73·2] 74·0 [72·5, 75·4] 28·7 [26·8, 30·6] 37·2 [35·3, 39·1] 0·772 [0·758, 0·785] 

250 78·6 [77·5, 79·7] 73·0 [72·6, 73·4] 21·4 [20·3, 22·5] 76·4 [75·7, 77·0] 0·842 [0·835, 0·848] 97·6 [96·8, 98·2] 18·6 [17·4, 19·9] 2·4 [1·8, 3·2] 57·5 [56·2, 58·9] 0·779 [0·767, 0·790] 

251 73·5 [72·3, 74·6] 80·1 [79·8, 80·5] 26·5 [25·4, 27·7] 71·8 [71·0, 72·5] 0·845 [0·839, 0·851] 97·5 [96·8, 98·1] 19·0 [17·7, 20·3] 2·5 [1·9, 3·2] 57·4 [56·1, 58·8] 0·788 [0·776, 0·801] 

270 69·4 [68·1, 70·6] 81·6 [81·3, 82·0] 30·6 [29·4, 31·9] 71·3 [70·6, 72·1] 0·829 [0·822, 0·835] 75·4 [73·6, 77·2] 65·5 [63·9, 67·0] 24·6 [22·8, 26·4] 42·6 [40·8, 44·4] 0·782 [0·770, 0·794] 

271 70·5 [69·3, 71·7] 78·3 [78·0, 78·7] 29·5 [28·3, 30·7] 74·3 [73·6, 75·0] 0·824 [0·817, 0·830] 70·8 [68·9, 72·7] 74·8 [73·4, 76·2] 29·2 [27·3, 31·1] 36·6 [34·7, 38·5] 0·771 [0·758, 0·784] 

289 72·1 [70·9, 73·3] 82·6 [82·2, 82·9] 27·9 [26·7, 29·1] 69·4 [68·6, 70·2] 0·850 [0·844, 0·856] 97·4 [96·6, 98·0] 18·2 [17·0, 19·5] 2·6 [2·0, 3·4] 57·7 [56·3, 59·0] 0·779 [0·767, 0·791] 

311 69·1 [67·8, 70·3] 81·5 [81·1, 81·8] 30·9 [29·7, 32·2] 71·6 [70·8, 72·4] 0·831 [0·825, 0·838] 75·3 [73·5, 77·1] 65·8 [64·3, 67·4] 24·7 [22·9, 26·5] 42·4 [40·6, 44·2] 0·781 [0·769, 0·794] 

380 71·3 [70·1, 72·5] 83·9 [83·6, 84·2] 28·7 [27·5, 29·9] 68·0 [67·1, 68·8] 0·851 [0·845, 0·857] 97·4 [96·6, 98·0] 18·4 [17·1, 19·7] 2·6 [2·0, 3·4] 57·6 [56·3, 59·0] 0·793 [0·782, 0·805] 

392 71·4 [70·2, 72·6] 84·5 [84·2, 84·8] 28·6 [27·4, 29·8] 67·1 [66·2, 67·9] 0·854 [0·848, 0·860] 97·9 [97·2, 98·4] 16·3 [15·1, 17·5] 2·1 [1·6, 2·8] 58·1 [56·8, 59·5] 0·798 [0·787, 0·810] 

402 69·6 [68·4, 70·8] 81·6 [81·3, 81·9] 30·4 [29·2, 31·6] 71·3 [70·5, 72·0] 0·833 [0·827, 0·840] 74·2 [72·4, 76·0] 68·4 [66·9, 69·9] 25·8 [24·0, 27·6] 40·9 [39·0, 42·7] 0·781 [0·769, 0·794] 

417 72·0 [70·8, 73·2] 83·7 [83·4, 84·0] 28·0 [26·8, 29·2] 68·0 [67·2, 68·8] 0·856 [0·850, 0·862] 97·9 [97·2, 98·4] 16·9 [15·7, 18·2] 2·1 [1·6, 2·8] 58·0 [56·6, 59·3] 0·799 [0·787, 0·811] 
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Supplementary Table 4C: Performance characteristics by age subgroup of models shortlisted as tool candidates using the internal validation (TARN) dataset 

Task  

ID 

 
16-64 years 

 
65+ years 

Sensitivity Specificity Under-triage Over-triage 
 

AUC Sensitivity Specificity Under-triage Over-triage 
AUC 

RPART                     

1 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·783 [0·775, 0·791] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·738 [0·726, 0·751] 

3 75·3 [73·9, 76·6] 72·4 [71·8, 73·0] 24·7 [23·4, 26·1] 66·6 [65·5, 67·5] 0·787 [0·778, 0·795] 65·7 [63·4, 67·9] 75·8 [75·4, 76·3] 34·3 [32·1, 36·6] 87·1 [86·4, 87·8] 0·741 [0·728, 0·754] 

37 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·794 [0·786, 0·803] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·746 [0·733, 0·759] 

52 75·3 [73·9, 76·6] 72·4 [71·8, 73·0] 24·7 [23·4, 26·1] 66·6 [65·5, 67·5] 0·792 [0·784, 0·800] 65·7 [63·4, 67·9] 75·8 [75·4, 76·3] 34·3 [32·1, 36·6] 87·1 [86·4, 87·8] 0·745 [0·732, 0·758] 

124 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·788 [0·780, 0·796] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·742 [0·729, 0·754] 

                     

XGB                     

1 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·795 [0·787, 0·804] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·747 [0·734, 0·759] 

3 75·3 [73·9, 76·6] 72·4 [71·8, 73·0] 24·7 [23·4, 26·1] 66·6 [65·5, 67·5] 0·809 [0·801, 0·817] 65·7 [63·4, 67·9] 75·8 [75·4, 76·3] 34·3 [32·1, 36·6] 87·1 [86·4, 87·8] 0·763 [0·750, 0·776] 

37 82·6 [81·4, 83·8] 70·1 [69·4, 70·7] 17·4 [16·2, 18·6] 66·3 [65·3, 67·2] 0·839 [0·831, 0·847] 67·3 [65·0, 69·5] 75·1 [74·6, 75·6] 32·7 [30·5, 35·0] 87·1 [86·4, 87·8] 0·752 [0·739, 0·765] 

38 76·8 [75·4, 78·1] 71·5 [70·9, 72·2] 23·2 [21·9, 24·6] 66·8 [65·8, 67·7] 0·811 [0·803, 0·819] 67·2 [64·9, 69·4] 74·9 [74·4, 75·4] 32·8 [30·6, 35·1] 87·3 [86·6, 88·0] 0·765 [0·752, 0·778] 

41 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·821 [0·813, 0·829] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·766 [0·752, 0·779] 

42 76·0 [74·6, 77·3] 71·8 [71·2, 72·4] 24·0 [22·7, 25·4] 66·8 [65·8, 67·8] 0·806 [0·798, 0·815] 66·3 [64·0, 68·6] 75·3 [74·8, 75·8] 33·7 [31·4, 36·0] 87·2 [86·5, 87·9] 0·778 [0·766, 0·791] 

43 74·4 [73·0, 75·7] 74·0 [73·4, 74·6] 25·6 [24·3, 27·0] 65·4 [64·4, 66·4] 0·815 [0·807, 0·824] 60·0 [57·7, 62·4] 81·5 [81·1, 81·9] 40·0 [37·6, 42·3] 85·0 [84·1, 85·8] 0·760 [0·746, 0·774] 

44 82·0 [80·8, 83·2] 70·6 [70·0, 71·2] 18·0 [16·8, 19·2] 66·0 [65·0, 67·0] 0·852 [0·845, 0·859] 66·7 [64·4, 68·9] 75·7 [75·2, 76·1] 33·3 [31·1, 35·6] 87·0 [86·3, 87·7] 0·769 [0·756, 0·781] 

53 75·3 [73·9, 76·6] 72·4 [71·8, 73·0] 24·7 [23·4, 26·1] 66·6 [65·5, 67·5] 0·813 [0·805, 0·821] 65·7 [63·4, 67·9] 75·8 [75·4, 76·3] 34·3 [32·1, 36·6] 87·1 [86·4, 87·8] 0·780 [0·767, 0·792] 

54 74·9 [73·5, 76·3] 73·6 [73·0, 74·2] 25·1 [23·7, 26·5] 65·6 [64·6, 66·7] 0·825 [0·817, 0·833] 61·2 [58·9, 63·5] 80·5 [80·1, 80·9] 38·8 [36·5, 41·1] 85·4 [84·5, 86·2] 0·773 [0·760, 0·786] 

121 83·4 [82·2, 84·5] 69·8 [69·2, 70·4] 16·6 [15·5, 17·8] 66·2 [65·3, 67·2] 0·855 [0·848, 0·862] 68·1 [65·9, 70·3] 74·7 [74·2, 75·2] 31·9 [29·7, 34·1] 87·2 [86·5, 87·9] 0·770 [0·758, 0·783] 

124 77·5 [76·1, 78·8] 78·8 [78·2, 79·3] 22·5 [21·2, 23·9] 59·7 [58·6, 60·8] 0·854 [0·847, 0·862] 59·1 [56·7, 61·4] 84·0 [83·6, 84·4] 40·9 [38·6, 43·3] 83·3 [82·3, 84·2] 0·772 [0·758, 0·785] 

125 82·3 [81·1, 83·5] 70·5 [69·9, 71·2] 17·7 [16·5, 18·9] 66·0 [65·0, 66·9] 0·854 [0·846, 0·861] 67·2 [64·9, 69·4] 75·7 [75·2, 76·1] 32·8 [30·6, 35·1] 86·9 [86·2, 87·6] 0·784 [0·772, 0·797] 

130 76·6 [75·3, 77·9] 71·6 [71·0, 72·2] 23·4 [22·1, 24·7] 66·7 [65·7, 67·7] 0·814 [0·806, 0·822] 67·3 [65·0, 69·5] 74·9 [74·4, 75·4] 32·7 [30·5, 35·0] 87·2 [86·5, 87·9] 0·783 [0·771, 0·795] 

131 75·6 [74·2, 76·9] 73·7 [73·1, 74·3] 24·4 [23·1, 25·8] 65·4 [64·3, 66·4] 0·828 [0·820, 0·836] 61·7 [59·4, 64·0] 80·4 [80·0, 80·8] 38·3 [36·0, 40·6] 85·3 [84·5, 86·1] 0·775 [0·761, 0·788] 

141 74·8 [73·4, 76·1] 73·7 [73·1, 74·3] 25·2 [23·9, 26·6] 65·6 [64·6, 66·6] 0·824 [0·816, 0·833] 62·4 [60·0, 64·7] 80·6 [80·2, 81·1] 37·6 [35·3, 40·0] 85·1 [84·2, 85·9] 0·788 [0·775, 0·800] 

154 75·5 [74·1, 76·9] 77·1 [76·5, 77·7] 24·5 [23·1, 25·9] 62·2 [61·1, 63·3] 0·847 [0·839, 0·854] 61·8 [59·4, 64·1] 78·6 [78·2, 79·1] 38·2 [35·9, 40·6] 86·4 [85·6, 87·1] 0·780 [0·768, 0·793] 

165 72·9 [71·5, 74·3] 78·3 [77·8, 78·9] 27·1 [25·7, 28·5] 61·7 [60·6, 62·8] 0·838 [0·830, 0·846] 59·2 [56·8, 61·5] 83·9 [83·5, 84·3] 40·8 [38·5, 43·2] 83·3 [82·4, 84·2] 0·781 [0·768, 0·794] 

166 75·9 [74·5, 77·2] 72·2 [71·5, 72·8] 24·1 [22·8, 25·5] 66·5 [65·5, 67·5] 0·828 [0·820, 0·836] 62·8 [60·5, 65·1] 78·9 [78·5, 79·4] 37·2 [34·9, 39·5] 86·0 [85·2, 86·8] 0·790 [0·778, 0·803] 

250 83·2 [82·0, 84·3] 70·1 [69·4, 70·7] 16·8 [15·7, 18·0] 66·1 [65·1, 67·1] 0·860 [0·853, 0·868] 68·3 [66·0, 70·4] 74·9 [74·4, 75·4] 31·7 [29·6, 34·0] 87·1 [86·4, 87·8] 0·789 [0·777, 0·801] 

251 79·9 [78·6, 81·2] 75·2 [74·6, 75·8] 20·1 [18·8, 21·4] 62·7 [61·7, 63·8] 0·863 [0·856, 0·871] 58·9 [56·6, 61·3] 83·4 [83·0, 83·8] 41·1 [38·7, 43·4] 83·8 [82·8, 84·7] 0·783 [0·770, 0·796] 

270 73·7 [72·3, 75·1] 78·2 [77·6, 78·7] 26·3 [24·9, 27·7] 61·6 [60·5, 62·7] 0·840 [0·833, 0·848] 59·6 [57·2, 61·9] 83·9 [83·5, 84·3] 40·4 [38·1, 42·8] 83·2 [82·2, 84·1] 0·783 [0·770, 0·796] 

271 74·5 [73·1, 75·9] 74·6 [74·0, 75·2] 25·5 [24·1, 26·9] 64·9 [63·8, 65·9] 0·830 [0·822, 0·838] 61·6 [59·2, 63·9] 80·8 [80·3, 81·2] 38·4 [36·1, 40·8] 85·1 [84·3, 85·9] 0·791 [0·779, 0·804] 

289 77·5 [76·1, 78·8] 80·2 [79·7, 80·7] 22·5 [21·2, 23·9] 58·1 [56·9, 59·2] 0·869 [0·862, 0·876] 60·2 [57·8, 62·5] 84·1 [83·7, 84·5] 39·8 [37·5, 42·2] 82·9 [81·9, 83·8] 0·797 [0·785, 0·810] 

311 73·1 [71·6, 74·5] 78·1 [77·5, 78·6] 26·9 [25·5, 28·4] 61·9 [60·8, 63·0] 0·840 [0·832, 0·847] 60·1 [57·7, 62·4] 83·7 [83·3, 84·1] 39·9 [37·6, 42·3] 83·3 [82·3, 84·2] 0·797 [0·784, 0·809] 

380 76·9 [75·5, 78·2] 81·6 [81·0, 82·1] 23·1 [21·8, 24·5] 56·5 [55·3, 57·7] 0·870 [0·863, 0·877] 58·7 [56·3, 61·0] 85·4 [85·1, 85·8] 41·3 [39·0, 43·7] 82·0 [80·9, 83·0] 0·798 [0·786, 0·810] 

392 77·2 [75·9, 78·5] 80·8 [80·3, 81·3] 22·8 [21·5, 24·1] 57·4 [56·2, 58·6] 0·869 [0·862, 0·876] 58·3 [55·9, 60·6] 87·0 [86·6, 87·4] 41·7 [39·4, 44·1] 80·3 [79·2, 81·4] 0·801 [0·788, 0·813] 

402 73·6 [72·2, 75·0] 78·2 [77·6, 78·7] 26·4 [25·0, 27·8] 61·6 [60·5, 62·8] 0·842 [0·834, 0·849] 60·6 [58·2, 62·9] 83·9 [83·5, 84·3] 39·4 [37·1, 41·8] 83·0 [82·0, 83·9] 0·797 [0·785, 0·810] 

417 77·9 [76·5, 79·2] 80·2 [79·7, 80·8] 22·1 [20·8, 23·5] 57·9 [56·7, 59·0] 0·873 [0·866, 0·880] 58·8 [56·4, 61·1] 86·0 [85·6, 86·4] 41·2 [38·9, 43·6] 81·4 [80·3, 82·4] 0·803 [0·790, 0·815] 

Ledger:  Values shown are percentages (except AUC), accompanied by 95% confidence intervals·   rpart=Decision tree, XGB=eXtreme Gradient Boosting 
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