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Study objective: Machine learning models carry unique potential as decision-making aids and prediction tools for improving
patient care. Traumatically injured patients provide a uniquely heterogeneous population with severe injuries that can be difficult
to predict. Given the relative infancy of machine learning applications in medicine, this systematic review aimed to better
understand the current state of machine learning development and implementation to help create a basis for future research.

Methods:We conducted a systematic review from inception to May 2021, using Embase, MEDLINE through Ovid, Web of Science,
Google Scholar, and relevant gray literature, for uses of machine learning in predicting the outcomes of trauma patients. The
screening and data extraction were performed by 2 independent reviewers.

Results: Of the 14,694 identified articles screened, 67 were included for data extraction. Artificial neural networks comprised the
most commonly used model, and mortality was the most prevalent outcome of interest. In terms of machine learning model
development, there was a lack of studies that employed external validation, feature selection methods, and performed formal
calibration testing. Significant heterogeneity in reporting was also observed between the machine learning models employed,
patient populations, performance metrics, and features employed.

Conclusion: This review highlights the heterogeneity in the development and reporting of machine learning models for the
prediction of trauma outcomes. While these models present an area of opportunity as an ancillary to clinical decision-making, we
recommend more standardization and rigorous guidelines for the development of future models. [Ann Emerg Med. 2022;-:1-16.]

Please see page XX for the Editor’s Capsule Summary of this article.
0196-0644/$-see front matter
Copyright © 2022 by the American College of Emergency Physicians.
https://doi.org/10.1016/j.annemergmed.2022.05.011
INTRODUCTION
Background

The high rate of complications, health care costs, and
overall burden to health care systems associated with
trauma have prompted the development of various tools for
predicting trauma patient outcomes, such as the Injury
Severity Scale (ISS) and Trauma and Injury Severity Score
(TRISS).1,2 However, these tools were developed using
outdated data sets and limited in the scope of data that
could be processed at the time.2 For this reason, some
clinicians have raised concerns about the ability of the
existing tools to provide accurate clinical predictions in
contemporary trauma care.3

Machine learning provides an exciting opportunity in the
development of sophisticated prediction models using large,
complex data sets. Since its introduction to the medical field
in the 1950s, machine learning’s viability and potential uses
have only grown with modern advancements in computing
power.4 The potential of machine learning in trauma-related
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prediction modeling is predicated on its ability to harness the
vast amounts of patient-related data collected.

Compared with more traditional methods, machine
learning is better able to handle large sets of data, particularly
those that are unstructured or nonlinear or contain missing
values.5,6 Machine learning models have been able to predict
which patients would develop severe sepsis in the future and
who would deteriorate and require admission to the ICU.7

Several studies have shown that predictive models using
machine learning have outperformed traditional predictive
tools and even field experts in some instances.7,8 Due to the
complexity and heterogeneity of trauma, predicting outcomes
is difficult, and the potential complications are devastating for
a largely young population; therefore, better prediction of
trauma outcomes is paramount.

Importance
Despite their benefits, machine learning models still

carry caveats. Because typical machine learning models are
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Editor’s Capsule Summary

What is already known on this topic
Machine learning has developed rapidly with many
attempts to develop clinical decision tools and other
forms of real-time decision support.

What question this study addressed
What does the published literature reveal about
machine learning decision support predicting
outcomes in trauma care?

What this study adds to our knowledge
Machine learning studies are too heterogenous to
allow meta-analysis. Model development is varied
and study quality either limited or indeterminate.

How this is relevant to clinical practice
While heralded and exciting, machine learning
remains in its infancy in application to trauma care.
Future uptake will likely require improved reporting
standardization.
able to self-adjust as they “learn,” this may lead to a “black-
box” phenomenon, where the creators of the model may
not be entirely certain of its operational methods. A
machine learning model may also be susceptible to
“overfitting,” where a model’s logic is too tightly
conformed to its training data set and it performs poorly
when introduced to new data.

A number of systematic reviews have already explored
the use of machine learning in clinical prediction tools.9-13

Liu and Salinas6 conducted a 2017 systematic review
investigating the potential of machine learning in
predicting outcomes of traumatically injured patients and
stated that further research was needed to establish
common performance criteria. Since that time, although a
large number of studies have been published, there has
been little prospective implementation of machine learning
models despite their potential utility in the clinical setting.
As such, machine learning in health care remains in a
relatively infantile stage. A lack of consistency across
research reporting and standards may be hampering efforts
to demonstrate the benefits and applications of machine
learning.

Goals of This Investigation
We conducted this systematic review to elaborate on

previous work, specifically focusing on performance criteria
and feature selection. Our objective was to survey the
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studies that have used machine learning for predicting
trauma outcomes and identify the methods used to provide
insight for further standardization of machine learning
research.
METHODS
We performed a systematic review according to the

guidelines of the Preferred Reporting Items for Systematic
Review and Meta-Analysis Protocols (PRISMA-P)
(Appendix E1, available at http://www.annemergmed.
com). The study was registered with the International
Prospective Register of Systematic Reviews (PROSPERO;
CRD42021248580). The systematic review was conducted
and reported according to the PRISMA statements.14

Research ethics approval and informed consent were not
required.

Eligibility Criteria and Outcomes
English articles using modern machine learning models

and trauma outcomes were included, with no date
restrictions, from any country of origin. Letters, editorials,
case reports, case series, and review articles were excluded.
Examples of machine learning models included artificial
neural networks, support vector machines, and random
forests. For our purposes, methods such as logistic
regression and multivariate logistic regression were
considered as statistical methods and not included.
Clinically relevant outcomes included in-hospital mortality,
the need for clinical interventions, and the development of
complications. Studies that primarily focused on patients
aged less than 16, orthopedic-only trauma, psychiatric
trauma and outcomes, or out-of-hospital prediction (ie,
need for hospital transport) were excluded. Articles
centered on evaluating diagnostic modalities, such as
applying machine learning–based computer vision to
identify pathology on medical imaging, were also excluded.
Finally, articles for which full-text versions could not be
retrieved (eg, the author did not respond to a request for a
full-text article, or a conference abstract existed without a
full-text study) were also excluded.

Machine Learning Techniques
Artificial neural networks attempt to model human

cognition through networks of intersignaling processing
nodes, yielding summed probabilities to drive predictions.
Support vector machines are known as a kernel method,
which virtually projects data in multiple dimensions and
generates “dividers,” known as hyperplanes, to separate the
data to create classifications.15 A decision tree consists of a
series, or “tree,” of hierarchical binary nodes that are
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organized based on their relative importance to the data
and the given outcome. This makes decision trees
sometimes more interpretable than other algorithms, such as
artificial neural networks and support vector machines, but
they can be very sensitive to small changes in training data and
prone to overfitting.16 A Bayesian network is a probabilistic
graphic model that represents data through a set of variables
and their conditional dependencies with a directed graph.
Unlike in an artificial neural network, each input variable is
assumed to be independent, and the accumulation of
probabilities from all variables and their outcomes forms the
final prediction. Random forests make predictions by creating
hundreds or thousands of smaller decision trees (hence,
“forest”) and combining each of their outputs. This method
helps combat the tendency of decision trees to overfit.15
Search Strategy
A search was conducted in consultation with an

information specialist, among 4 databases (Embase,
MEDLINE through Ovid, Web of Science, Google Scholar),
from inception to May 14, 2021, alongside a gray-literature
search reviewing trauma conference proceedings and clinical
trial registries (eg, ClinicalTrials.gov) to capture all eligible
articles that originated from both medical and technological
backgrounds. The search terms used included subject
headings and keywords associated with machine learning
models and trauma. The bibliographies of identified articles
were also reviewed for additional relevant articles. The full
search strategy for MEDLINE is available in Appendix E2
(available at http://www.annemergmed.com).
Data Extraction and Analysis
The screening and subsequent data extraction processes

were facilitated by Covidence (Veritas Health Information,
2016), a literature review streamlining software
recommended by Cochrane. All identified articles
underwent title and abstract screening by 2 independent
reviewers (TZ, AN) with an interrater reliability of 98.5%
and a Cohen kappa of 0.51. The full texts of relevant
articles were then similarly screened. Screening conflicts were
resolved by a third reviewer (BN). Bias and applicability
assessments of the final included articles were performed by 2
independent reviewers (TZ, AN) with guidance from the
Prediction Model Risk of Bias Assessment Tool
(PROBAST), as described in previous systematic reviews of
machine learning prediction models.17

A standardized form was used for data extraction and
included the following fields: article title, first author,
country of study, participant data collection type, model
development or validation, patient population category,
Volume -, no. - : - 2022
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development cohort, derivation and internal validation,
external validation, clinical outcome(s), total patients,
percentage of males, average age, number of patients with
outcome, number of model features considered, feature
extraction method, final model features used, most
important model features, machine learning algorithms
used, presence of a comparator, and various model
performance metrics (eg, area under the receiver operating
characteristic curve [AUROC], accuracy, sensitivity,
specificity).

Excel (Microsoft, 2021) was used to facilitate data
organization and generate descriptive statistics of the
extracted data. Individual machine learning models were
classified by their broader types, and the specific clinical
outcomes were classified into 6 categories. The features of
each machine learning model were aggregated to identify
common themes.

The heterogeneity of patient populations, clinical
outcomes, and machine learning models made a meta-
analysis infeasible.
RESULTS
Search Results

The literature search identified 14,694 studies.
Following the removal of duplicates and addition of 15
articles through reference searches, 7,349 articles were
screened by title and abstract. Full-text screening was
performed for 95 articles, resulting in 67 studies that were
eligible for data extraction and analysis. The full-text
exclusion criteria included a lack of outcome predictions
(n¼12), not involving trauma patients (n¼5), and a lack of
clinically relevant outcomes (n¼5). The details of the full
screening process are described in Figure 1.
Characteristics of Study Subjects
Table 1 summarizes some key characteristics of the

studies included in this review, with an expanded summary
in Appendix E3 (available at http://www.annemergmed.
com). The studies that were identified primarily originated
from the United States (n¼32, 48%) and countries in
Europe and Asia. The publication dates ranged from 1993
to 2021, with nearly half (n¼30, 45%) published after
2017. Ten (15%) studies used prospective data, 54 (82%)
used retrospective data, and 2 (3%) employed both types.
Most studies acquired their data from local electronic
health records (n¼41, 61%), followed by databases (n¼19,
28%) and national electronic health records (n¼6, 9%),
with one (1%) study not specifying its data source.
Excluding the 8 (12%) studies that were already focused on
model validation, 8 (12%) studies included explicit external
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Figure 1. PRISMA flow diagram of the selection process for included studies.
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validation in addition to internal validation in the
development of their model. The articles were separated by
focus on either multisystem trauma (n¼42, 61%) or
traumatic brain injury (n¼25, 37%). Clinical outcomes
involving mortality were the most common (n¼38, 57%),
followed by complications (n¼18, 26%), functional
outcomes (n¼14, 20%), interventions (n¼5, 7%), length
of stay (n¼5, 7%), and finances (n¼1, 1%). A graphic
summary of some key results is shown in Figure 2.
Main Results
The number of features considered for model

development by various studies varied greatly, from 7 to
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272. Out of the minority of articles that employed
objective methods to extract the most important features
(n¼25, 36%), these methods included machine learning
models, such as random forests, least absolute shrinkage
and selection operator (LASSO), and elastic net regression,
as well as statistical methods, including multivariate logistic
regression, Fisher exact tests, and Pearson correlation
coefficients. Appendix E4 (available at http://www.
annemergmed.com) shows the features used by each of the
machine learning models and, where available, up to 5 of
their respective most important variables. The overall
median number of features used was 9 (interquartile range
5 to 14), with similar medians in multisystem trauma and
traumatic brain injury models, at 10 (interquartile range 5
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ical Center Poriya from ClinicalKey.com by Elsevier on July 
sion. Copyright ©2022. Elsevier Inc. All rights reserved.

http://www.annemergmed.com
http://www.annemergmed.com


Table 1. Baseline characteristics of included studies.

Study Reference Data Collection Type Study Type Data Source
External
Validation

Clinical Outcome
Category

Machine Learning
Algorithm(s)

Patients with Traumatic Brain Injuries

Abbod 201118 Retrospective Development Local EHR No Mortality ANN

Abujaber 2020 (1)8 Retrospective Development Local EHR No Mortality ANN, SVM

Abujaber 2020 (2)19 Retrospective Development Local EHR No Complications RF, ANN, DT, SVM

Abujaber 2020 (3)41 Retrospective Development Local EHR No Mortality ANN

Donald 201921 Prospective Validation Database (BrainIT multicenter

database)

N/A Complications BN

Eftekhar 200522 Retrospective Development Multiple local EHRs No Mortality ANN

Feng 201923 Retrospective Validation Local EHR N/A Mortality SVM, KNN, DT

Gravesteijn 202024 Retrospective Validation Database (IMPACT-2, CENTER-TBI) N/A Mortality, functional

outcome

LASSO, SVM, ANN, RF,

gradient boosting

Hsu 200545 Retrospective Development National EHR No Functional outcome ANN

Kalpakis 201526 Retrospective Development Local EHR No Mortality, functional

outcome

Permutation entropy

Li 200027 Retrospective Development National EHR No Intervention ANN,

Lu 201528 Retrospective Development Local EHR Mortality, functional

outcome

ANN, BN, DT

Matsuo 202029 Retrospective Development Local EHR No Mortality, functional

outcome

LASSO, RF, gradient

boosting, DT, BN, SVM

Nikiforidis 199830 Retrospective Development Local EHR No Functional outcome BN

Pang 200731 Prospective Development Local EHR No Functional outcome DT, BN, ANN, discriminant

analysis

Davis 200832 Retrospective Development Local EHR No Mortality ANN, SVM, DT

Lang 199733 Prospective Development Local EHR No Mortality ANN

Pourahmad 201634 Retrospective Development Local EHR No Functional outcome DT, ANN

Pourahmad 201935 Retrospective Validation Local EHR N/A Functional outcome Forward selection, MRMR,

genetic algorithm

Rau 201836 Retrospective Development Local EHR No Mortality SVM, DT, BN, ANN

Rughani 201037 Retrospective Development Database (National Trauma Data

Bank)

No Mortality ANN, BN

Segal 200638 Retrospective Development Database (Traumatic Brain Injury

Model Systems database)

No Functional outcome ANN, DT

Shi 201339 Retrospective Development National EHR No Mortality ANN

van der Ploeg 201640 Retrospective Development Database (IMPACT database) Yes Mortality DT, RF, SVM, ANN

Vath 200041 Retrospective Development Not stated No Functional outcome ANN
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Table 1. Continued.

Study Reference Data Collection Type Study Type Data Source
External
Validation

Clinical Outcome
Category

Machine Learning
Algorithm(s)

Patients with Multisystem Trauma

Ahmed 202042 Retrospective Development Database (MIMIC 3) No Mortality BN

Becalick 200143 Retrospective Validation Local EHR N/A Mortality ANN

Bektas 200844 Prospective Development Local EHR No Complications ANN

Bradley 202045 Retrospective Development Local EHR No Complications RF

Bravo-Merodio 201946 Prospective Development Dataset (Brain Biomarkers After

Trauma Cohort Study)

No Complications Elastic net, LASSO

Chen 201347 Retrospective Development National EHR No Complications SVM

Christie 201848 Prospective Validation Local EHR (United States, South

Africa), national EHR (Cameroon)

N/A Mortality General additive models,

RF, LASSO

Christie 201949 Prospective Validation Dataset (Activation of Coagulation

and Inflammation in Trauma)

N/A Mortality, complications,

intervention

RF, LASSO, generalized

additive models

DiRusso 200050 Retrospective Development Regional EHR No Mortality ANN

Gelbard 201951 Prospective Development Local EHR No Complications RF

Gholipour 201552 Retrospective Development Local EHR No Mortality, length of stay ANN

Gorczyca 201953 Retrospective Development Database (National Trauma Data

Bank, Nationwide Readmission

Database)

Yes Mortality BN, RF, ANN, gradient

boosting

Hadzikadic 199654 Retrospective Development Local EHR No Mortality Concept formation

Hertz 202055 Retrospective Development Local EHR No Complications DT, BN, SVM, KNN

Hirshberg 200256 Retrospective Development Local EHR Yes Intervention ANN

Hubbard 201357 Prospective Development Multiple local EHRs No Mortality Generalized additive

models, BN, LASSO, RF

Hunter 200058 Retrospective Development National EHR No Mortality ANN

Ji 200959 Retrospective Development Regional EHR, Database (National

Trauma Data Bank)

No Mortality, functional

outcome, length of stay

DT, adaptive boost, SVM

Kim 201860 Retrospective Development Database (National Trauma Data

Bank)

No Mortality RF, ANN

Fann 200761 Retrospective Development Local EHR No Complications ANN

Kuo 201862 Retrospective Development Local EHR No Mortality SVM, DT

Li 202063 Retrospective Development Local EHR No Complications RF

Liu 2014 (1)64 Retrospective Development Local EHR No Intervention ANN

Liu 2014 (2)65 Retrospective &

prospective

Development Database (Trauma Vitals Database,

Wireless Vital Signs Monitor trial)

No Intervention DT, SVM, ANN

Marble 199966 Retrospective Development Database (TRACS database) No Complications ANN

Maurer 20211 Retrospective Development Database (ACS-TQIP database) No Mortality, complications DT
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McGonigal 199367 Retrospective Development Local EHR No Mortality ANN

Moinadini 201989 Prospective Development Local EHR No Complications ANN

Paydar 202190 Retrospective Development Local EHR No Functional outcome,

complications

SVM, KNN, ANN, adaptive

boosting

Pearl 200670 Retrospective Development Local EHR No Mortality ANN

Pearl 200871 Retrospective Development Database (National Trauma Data

Bank)

No Mortality ANN

Pearl 200972 Retrospective Development Database (National Trauma Data

Bank)

No Complications ANN

Perkins 2020 (1)73 Retrospective Development Databases (US Department of

Defense Trauma Registry, UK-

JTTR)

Yes Functional outcome BN

Perkins 2020 (2)74 Retrospective & prospective Development Multiple Local EHRs Yes Complications BN

Rutledge 199575 Retrospective Development Regional EHR No Mortality ANN

Rutledge 199876 Retrospective Development Database (Health Care Policy

Research’s Health Care

Utilization Project database)

No Mortality ANN

Schetinin 201898 Retrospective Development Database (US National Trauma Data

Bank)

No Mortality BN, DT

Servia 202078 Retrospective Development Database (RETRAUCI database) No Mortality ANN, DT, BN, adaptive

boosting, RF, other

Staziaki 20212 Retrospective Development Local EHR No Functional outcome, length

of stay

ANN, SVM

Tsiklidis 202079 Retrospective Development Database (National Trauma Data

Bank)

Yes (Trauma

Quality

Programs

participant

use file—
648,192

patient

records)

Mortality gradient boosting

Tsurumi 202080 Retrospective Development Dataset (Inflammation and Host

Response to Injury [Glue Grant]

cohort)

Yes Complications LASSO, ANN

Wolfe 200681 Retrospective Both Local EHR Yes Length of stay, mortality DT, ANN

ACS-TQIP, American College of Surgeons-Trauma Quality Improvement Program; ANN, artificial neural network; BN, Bayesian network; CENTER-TBI, Collaborative European NeuroTrauma Effectiveness Research in traumatic brain
injury; DT, decision tree; EHR, electronic health record; IMPACT, International Mission for Prognosis and Analysis of Clinical Trials in TBI; IMPACT-2, International Mission for Prognosis and Analysis of Clinical Trials in TBI-2; KNN,
K-nearest neighbor; MIMIC 3; Medical Information Mart for Intensive Care; MRMR, maximum relevance — minimum redundancy; RETRAUCI, Spanish Intensive Care Unit Trauma Registry; RF, random forest; SVM, support vector
machine; TRACS, National Trauma Registry System (US); UK-JTTR, UK joint theatre trauma register.
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Figure 2. Infographic of select key study results.

Machine Learning in the Prediction of Trauma Outcomes Zhang et al
to 14) and 8.5 (interquartile range 6 to 11.25), respectively.
The Glasgow Coma Scale (GCS) score, age, and various
injury severity scores were the most commonly included.
Building upon this, Table 2 consists of a database of all
features used by at least 2 of the included studies for
8 Annals of Emergency Medicine
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predicting mortality in patients with traumatic brain
injuries or multi-system trauma.

A summary of all studies’ machine learning models and
their respective performance metrics are presented in
Appendix E5 (available at http://www.annemergmed.com).
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Table 2. Features used by at least 2 studies to predict mortality in
patients with either traumatic brain injury or multisystem trauma.

TBI Multisystem Trauma

Age Age

Blood transfusion Age above 55

Body temperature AIS abdomen

CT findings AIS chest

Diabetes mellitus AIS extremity

GCS AIS head

GCS motor Body temperature

Glucose Coagulopathy

Head AIS Comorbidities

Heart rate Creatinine

Hematoma presence Hemoglobin

Intubation GCS

Injury Severity Score GCS eye

Length of stay GCS motor

Mode of transport GCS verbal

Mechanism of injury Glucose

Presence of other complications Hematocrit

Pupillary response Heart rate

Sex ICD-9 code

SpO2 INR

Systolic blood pressure Injury Severity Score

TBI diagnosis Low respiratory rate

Venous thromboembolism Low systolic blood pressure

Mechanism of injury

Potassium

Race

Respiratory rate

Sex

Sodium

SpO2

Systolic blood pressure

AIS, Abbreviated injury score; CT, computed tomography; ICD, International
Classification of Diseases; INR, International Normalized Ratio; SpO2, oxygen
saturation; TBI, traumatic brain injury.

Zhang et al Machine Learning in the Prediction of Trauma Outcomes
The number of machine learning models employed in each
study ranged from 1 to 23. In terms of broader categories,
artificial neural networks were the most commonly used
(n¼42, 63%), followed by decision trees (n¼18, 27%),
support vector machines (n¼15, 22%), Bayesian networks
(n¼14, 21%), random forests (n¼13, 19%), LASSO
(n¼7, 10%), gradient boosting (n¼4, 6%), and K-nearest
neighbors (n¼3, 5%). Others included generalized additive
models, adaptive boosting, elastic net, and concept
formation. As previously stated, logistic regression and
Volume -, no. - : - 2022
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multivariate regression methods were explicitly excluded
from counts of machine learning models, as these were
labeled as statistical methods. Out of the 25 studies that
directly compared machine learning models to logistic
regression, 48% (n¼12) reported no notable differences in
performance, while machine learning outperformed logistic
regression in 10 (40%) studies and underperformed in 3
(12%) studies. Three (4.5%) studies compared their model
performance to clinicians. Calibration statistics were
formally reported in 15 (21%) articles.

Table 3 summarizes the bias and applicability results,
guided by the PROBAST tool.17 Nineteen articles (28%)
had high risk of bias, 35 (52%) had low risk of bias, and the
remaining 13 (19%) had “unsure” risk of bias. It was
observed that most articles that were not assessed to have
low risk of bias faltered in the “analysis” portion of bias,
with high-risk and unsure ratings being given to 18 (26%)
articles each. These evaluations largely originated from the
improper handling of continuous and categorical variables,
not utilizing methods to select model features, lacking
adequate performance measures, and/or lacking model
calibration. Studies were evaluated to be much more
favorable in terms of applicability, with 54 (81%) articles
rated as highly applicable, 13 (19%) as unsure, and none as
low applicability.
LIMITATIONS
This review carried some limitations. First, although the

heterogeneity in the studies was an important finding, this
also rendered it difficult to compare models and outcomes
more directly and correspondingly; a meta-analysis could
not be performed. This review was also not designed to
examine the suitability between the chosen machine
learning model(s), patient population, and clinical
outcome(s) for any given study. The sheer amount of
different machine learning models that are available creates
difficulties in comparison, as there may be no one optimal
model for a given clinical scenario. Aside from the in-depth
understanding that would be required of each article’s
methodology, the myriad of subtypes which also exist for
each model type adds to this complexity.15 We attempted a
broad scope for our search, but some articles were likely
missed, owing to language barriers, and not being
accessible. For some studies, it was also difficult to assess
whether machine learning methods were used for outcome
prediction or for other instances. More standardized
frameworks for conducting and reporting machine learning
research will mitigate this. Publication bias is potentially
present, as the literature may lean toward models that
generate positive results. However, selecting for the best-
Annals of Emergency Medicine 9
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Table 3. Bias and applicability assessments of included studies by review authors based on PROBAST tool.

Study Reference

Risk of Bias Applicability

Participants Predictors Outcome Analysis Overall Participants Predictors Outcome Overall

Abbod 201118 þ þ þ ? þ þ þ þ þ
Abujaber 2020 (1)8 ? þ þ - - þ þ þ þ
Abujaber 2020 (2)19 - ? - - - þ - þ ?

Abujaber 2020 (3)20 - - þ - - þ þ þ þ
Ahmed 202042 þ þ þ þ þ þ þ þ þ
Becalick 200143 ? þ þ ? þ þ þ þ þ
Bektas 200844 þ þ þ þ þ þ þ þ þ
Bradley 202045 þ þ þ ? ? þ þ þ þ
Bravo-Merodio 201946 þ þ þ þ þ þ þ þ þ
Chen 201347 - þ - - - ? þ þ ?

Christie 201848 þ ? þ þ þ þ þ þ þ
Christie 201949 þ þ þ ? þ þ þ þ þ
DiRusso 200050 þ þ þ þ þ þ þ þ þ
Donald 201921 þ þ þ ? þ þ þ þ þ
Eftekhar 200522 ? ? þ - - ? þ þ ?

Feng 201923 þ þ þ þ þ þ þ þ þ
Gelbard 201951 þ þ þ - ? þ þ ? ?

Gholipour 201552 þ þ þ - - þ þ þ þ
Gorczyca 201953 þ þ þ þ þ þ þ þ þ
Gravesteijn 202024 ? þ þ þ þ þ þ þ þ
Hadzikadic 199654 ? þ þ - - þ þ þ þ
Hertz 202055 ? þ þ - ? ? þ þ ?

Hirshberg 200256 - ? þ ? - þ þ þ þ
Hsu 200525 þ þ þ - - þ þ þ þ
Hubbard 201357 þ þ þ þ þ þ þ þ þ
Hunter 200058 þ þ þ ? ? þ þ þ þ
Ji 200959 þ þ ? þ þ þ þ þ þ
Kalpakis 201526 þ þ þ þ þ þ þ þ þ
Kim 201860 þ þ þ þ þ þ þ þ þ
Fann 200761 ? þ ? - - ? - þ ?

Kuo 201862 þ þ þ ? ? þ þ þ þ
Li 200027 þ þ þ ? þ þ þ þ þ
Li 202063 ? þ ? þ ? ? þ ? ?

Liu 2014 (1)64 þ ? þ ? ? þ ? þ ?

Liu 2014 (2)65 þ þ þ þ þ þ þ þ þ
Lu 201528 þ þ þ þ þ þ þ þ þ
Marble 199966 þ þ ? - - þ þ þ ?

Matsuo 202029 þ þ þ ? ? þ þ þ þ
Maurer 20211 þ ? þ þ ? þ þ þ þ
McGonigal 199367 þ þ þ ? ? þ þ þ þ
Moinadini 201968 þ þ ? ? - ? þ þ þ
Nikiforidis 199830 þ ? þ - - þ þ þ þ
Pang 200731 þ þ þ þ þ þ þ þ þ
Paydar 202169 þ þ ? ? ? þ þ þ þ
Pearl 200670 þ þ þ - - þ þ þ þ
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Table 3. Continued.

Study Reference

Risk of Bias Applicability

Participants Predictors Outcome Analysis Overall Participants Predictors Outcome Overall

Pearl 200871 þ þ þ - - þ þ þ ?

Pearl 200972 þ ? ? - - þ ? ? ?

Davis 200853 þ þ þ ? ? þ þ þ þ
Perkins 2020 (1)73 þ þ þ þ þ þ þ þ þ
Perkins 2020 (2)74 þ þ þ þ þ þ þ þ þ
Lang 199733 þ þ þ - - þ þ þ þ
Pourahmad 201634 þ þ þ þ þ þ þ þ þ
Pourahmad 201935 þ þ þ ? þ þ þ þ þ
Rau 201836 þ þ þ þ þ þ þ þ þ
Rughani 201037 þ þ þ ? ? þ þ þ þ
Rutledge 199575 þ þ þ þ þ þ ? þ þ
Rutledge 199876 - þ þ ? - ? þ þ þ
Schetinin 201877 þ þ þ þ þ þ þ þ þ
Segal 200638 þ ? þ þ þ þ þ þ þ
Servia 202078 þ þ þ þ þ þ þ þ þ
Shi 201339 þ þ þ þ þ þ þ þ þ
Staziaki 20212 ? þ þ þ þ þ þ þ þ
Tsiklidis 202079 þ þ þ þ þ þ þ þ þ
Tsurumi 202080 þ þ þ þ þ þ ? þ ?

van der Ploeg 201640 þ þ þ þ þ þ þ þ þ
Vath 200041 - þ ? - - ? þ ? ?

Wolfe 200681 þ þ þ þ þ þ þ þ þ

þ, Favorable result (low bias/high applicability); -, unfavorable result (high bias/low applicability);?, unsure.
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performing model is a natural step in machine learning
development, as poorly performing models are irrelevant,
and the previous findings of the effect of publication bias
are mixed.82-84
DISCUSSION
Machine learning has extensive potential to help

clinicians navigate the complexities of trauma medicine,
improve patient outcomes, and reduce health care costs.85

As the role of machine learning will only continue to grow
within medicine, this systematic review was conducted to
help support the future development of predictive machine
learning models by gleaning insight from the current state
of affairs. A portion of this consisted of a partial update to
the 2017 review by Liu and Salinas.6 Nearly half of the
studies included were published after their review, which
speaks volumes about the rapid growth of machine learning
in trauma care. While we, similarly, found that machine
learning models were often successful in accurately
Volume -, no. - : - 2022
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predicting patient outcomes, this review highlights the
extent of heterogeneity in the development and evaluation
of machine learning models, even within the single field of
trauma medicine. Differences were widespread in areas
including model development (ie, feature selection, data
sampling, features used), algorithms used, model
validation, performance metrics, and research reporting.

Liu and Salinas6 also emphasized the importance of
utilizing information that could be realistically and quickly
collected at the bedside for prediction and called for a
common database of potential features that could be used
to predict trauma outcomes. To this end, our feature
database (Table 3) demonstrated, similarly to TRISS, that
features that were commonly predictive of mortality
included GCS score, age, and ISS score. Other features that
were included in model development were body
temperature, oxygen saturation, and age. The only variable
within TRISS that was not commonly represented in
machine learning models was the respiratory rate for
patients with traumatic brain injuries. One of the benefits
Annals of Emergency Medicine 11
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of machine learning is the inclusion of a larger and more
complex set of features in outcome prediction that would
simply be too unwieldly to mirror with a traditional scoring
tool. Second, this is paired with variable feature weighing,
something that is not always possible with standard
prediction scores.

This review highlights a lack of external validation.
External validation is a substantially consequential step in
developing effective and applicable machine learning
models but was only performed in a minority of studies.
This process not only helps improve accuracy but also
represents a crucial step to help ensure that overfitting is
avoided. This is compounded with the finding that most
studies did not employ objective methods in feature
selection for their machine learning models. Properly
weeding out redundant features can reduce the number of
parameters required, reduce training time, enhance
generalizability, and help avoid overfitting.86 Two other
systematic reviews have also found that calibration tests are
rarely performed, signaling this as an important weakness in
the field of predictive machine learning.87,88 This becomes
especially important when considering the ethical
implications of machine learning and the negative effects
that can arise. The algorithms that form the basis of
machine learning models are far from infallible and may
overfit data that carry institutional biases, however subtle
they may be. Zech et al89 found that their model performed
poorly on external data sets, as it had incorporated
confounding factors associated with institutional biases as
part of its predictions alongside more objective evaluated
pathology. When evaluating a machine learning algorithm
developed to identify patients in need of extra care in the
United States, Obermeyer et al90 found that it frequently
classified Black patients at the same risk level as White
patients, even when they were considerably sicker.
Examples such as these underscore the importance of the
proper development of machine learning models and the
scrutiny of input data. The technological superiority of
machine learning compared to more traditional paper-and-
pencil screening tools does not exempt it from crucial steps,
such as external validation to mitigate downstream bias.

The relative complexity of machine learning as a field
also means that it is inherently difficult to explain in
layman’s terms and, at times, even more difficult to show
due to its “black-box” nature. A number of papers have
explored the unique nature of machine learning
methodology.91-93 It is, therefore, unsurprising that there is
hesitation in the uptake of machine learning.6 Although
most developed models show great accuracy and
outperform their conventional counterparts, there are still
studies that identify more negative results.94,24,95 It is
12 Annals of Emergency Medicine
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difficult to pinpoint, within such a study, where exactly the
problem may lie—whether there was a suboptimal decision
in the development of the model or if machine learning is
simply maladapted to a specific clinical situation. Even
within machine learning, scrutiny should be given to the
exact machine learning algorithm being used. As found in
this review, while more novel methods may address
downfalls in their predecessors, more “traditional”
methods, such as logistic regression, can outperform within
some contexts. Questions still exist around adapting
practice to machine learning predictions and which
situations machine learning models might be best suited.
For instance, a machine learning model that predicted
sepsis was observed to create some ambiguity for clinicians
who were unsure how to change the management of
patients who were already receiving optimal therapy and
were clinically stable but predicted to later develop sepsis.96

However, improving clinical efficacy by incorporating
standard practices into the development and reporting of
predictive machine learning models should be a first step in
beginning to address some of these barriers.7

Additionally, many deviations from the prescribed best
practices of machine learning model development were
observed, which—although they may reflect the infancy of
the field in medicine—are harmful to its overall growth.
Underlining the importance of high-quality data in the
development of machine learning, some patient cohorts
were relatively small, while in other articles, issues were
observed regarding the handling of missing data and
inappropriate conversions of continuous features into
categorical values. Other shortcomings, such as a paucity of
studies employing prospective data collection and/or
performing formal calibration tests, emphasize the need for
guidelines to follow.

As such, there is a strong need for additional resources
for future researchers to follow, including a database of
machine learning algorithms and, perhaps, the
standardization of outcomes and metrics for machine
learning uses. For instance, while the AUROC currently
appears to be widely accepted as a performance criterion,
not all studies in this review reported AUROCs; some
opted for metrics such as sensitivity and specificity instead.
Developers should also strive to include external validation
metrics as a standard, normalized practice so that issues of
generalizability are identified early. Within individual
medical fields, it may be important to set specific priority
topics to better focus research efforts.7 Setting proper
research priorities and standardizing the reporting of
research through the use of machine learning reporting
guidelines would allow for increased ease in directly
comparing machine learning models, both individually and
Volume -, no. - : - 2022
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through meta-analyses. This would potentially produce
stronger evidence for real-time machine learning
applications, fueling the rationale for clinical
implementation, as the necessary technology and need for
machine learning in trauma care are already present. The
unique plasticity of machine learning to continue adapting
after implementation also carries a distinct potential
advantage over traditional decisionmaking tools, but not
without regulatory and ethical concerns to explore.
Looking to the future, breaking the glass on the real-time
clinical applications of machine learning would open
avenues to allow for dynamic machine learning–supported
decision tools that could be vital in trauma evaluation and
treatment.

Ultimately, targeting the issues associated with
heterogeneity highlights the need for the establishment of
clearer guidelines to help promote the best practices of
machine learning model development. Although it is a clear
upside that many models were assessed to be effective in
predicting their respective outcomes, there are clearly many
growing pains in the field. Some tools, such as PROBAST,
CONSORT, and SPIRIT-AI, exist, but these are less
oriented to aid in model development or they may not
entirely apply to machine learning model
development.17,97,98 TRIPOD-AI is a tool that is currently
being developed to address these issues in the development
of machine learning prediction models.99,100 We
recommend following these guidelines to help ensure
quality artificial intelligence research, as they provide in-
depth checklists for every step from machine learning
development to reporting, similarly to how the PRISMA
outlines steps and considerations for a review.14 Our
systematic review demonstrated a significant lack of
database scrutiny (as seen in the PROBAST bias
guidelines), feature selection, and external validation.
Improvements in these areas would help reduce bias in
model output and improve reproducibility. The “black-
box” aspect of artificial intelligence research heavily
influences our ability to bring it into the mainstream, as
most clinicians are hesitant without knowing the inner
workings. These strategies would help mitigate this
hesitancy and improve the adoption of these powerful
models.

In conclusion, machine learning has great potential in
trauma care and can be applied to a variety of patient
outcomes. To help improve further research, we have
developed a feature database related to mortality prediction
for both traumatic brain injury and multisystem trauma.
We recommend the use of existing guidelines, such as
CONSORT-AI, SPIRIT-AI, and PROBAST, and look
forward to TRIPOD-AI to standardize study methods and
Volume -, no. - : - 2022
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reporting. Machine learning has the potential for heavy
bias, and the scrutiny of data sets, feature selection, and
external validation are imperative for further
implementation. Our study demonstrates the current
paucity of these, and future work is needed to ensure the
proper development, accuracy, and applicability of machine
learning models.
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